Geometric Desingularization in Slow-Fast Systems with Application to the Glycolytic Oscillations Model

被引:1
作者
Kosiuk, Ilona [1 ]
Szmolyan, Peter [2 ]
机构
[1] Max Planck Inst Math Sci, Inselstr 22, D-04103 Leipzig, Germany
[2] Vienna Univ Technol, Inst Anal & Sci Comp, A-1040 Vienna, Austria
来源
NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III | 2010年 / 1281卷
关键词
slow-fast dynamics; relaxation oscillations; geometric singular perturbation theory; blow-up method; slow manifolds; SINGULAR PERTURBATION-THEORY;
D O I
10.1063/1.3498433
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An introduction to some recently developed methods for the analysis of systems of singularly perturbed ordinary differential equations is given in the context of a specific problem describing glycolytic oscillations. Concepts from geometric singular perturbation theory and geometric desingularization based on the blow-up method are explained.
引用
收藏
页码:235 / +
页数:2
相关论文
共 5 条
[1]  
Dumortier F, 1996, MEM AM MATH SOC, V121, P1
[3]  
KOSIUK I., PROBLEMS TECHN UNPUB
[4]   Extending geometric singular perturbation theory to nonhyperbolic points - Fold and canard points in two dimensions [J].
Krupa, M ;
Szmolyan, P .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2001, 33 (02) :286-314
[5]   SCALING IN BIOCHEMICAL KINETICS - DISSECTION OF A RELAXATION-OSCILLATOR [J].
SEGEL, L ;
GOLDBETER, A .
JOURNAL OF MATHEMATICAL BIOLOGY, 1994, 32 (02) :147-160