An Efficient ZnIn2S4@CuInS2 Core-Shell p-n Heterojunction to Boost Visible-Light Photocatalytic Hydrogen Evolution

被引:128
|
作者
Guo, Xinlei [1 ]
Peng, Yanhua [1 ]
Liu, Guangbo [2 ]
Xie, Guangwen [3 ]
Guo, Yanan [1 ]
Zhang, Yan [1 ]
Yu, Jianqiang [1 ]
机构
[1] Qingdao Univ, Coll Chem & Chem Engn, Qingdao 266071, Shandong, Peoples R China
[2] Chinese Acad Sci, Qingdao Inst Bioenergy & Bioproc Technol, Key Lab Biofuels, Qingdao 266101, Shandong, Peoples R China
[3] Qingdao Univ Sci & Technol, Key Lab Nanomat, Qingdao 266042, Shandong, Peoples R China
关键词
QUANTUM DOTS; JUNCTION PHOTOCATALYSTS; ZNIN2S4; NANOSHEETS; HETEROSTRUCTURE; FABRICATION; TIO2; PHOTOANODE; CONTACT; ROBUST; ROUTE;
D O I
10.1021/acs.jpcc.9b11623
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The efficient separation of photoexcited electrons and holes is crucial for improving the activity of photocatalytic hydrogen evolution. Herein, an efficient core-shell p-n heterojunction of ZnIn2S4@CuInS2 microflowers has been devised and fabricated by two-step hydrothermal method. The results revealed that the marigold-like microspheres of ZnIn2S4@CuInS2 heterojunction consisted of thin nanosheets, matched well in the lattice, and had a large interface contact area, which boosted charge separation and transfer for solar hydrogen production. Moreover, the intimate interfacial contact between n-type ZnIn2S4 and p-type CuInS2 resulted in the formation of unique p-n heterojunction, which further promoted charge separation due to the built-in electric field. As a consequence, the ZnIn2S4@CuInS2 photocatalyst with 5 atom % CuInS2 showed the highest production of H-2 evolution (about 1168 mu mol.g(-1)) among all prepared photocatalysts, which was nearly 4-fold the amount of the hydrogen production for the pristine ZnIn2S4. Therefore, the core-shell p-n heterojunction is an efficient structure design for the utilization of solar energy to obtain clean energy.
引用
收藏
页码:5934 / 5943
页数:10
相关论文
共 50 条
  • [41] Towards efficient photocatalytic degradation of organic pollutants in hierarchical TiO2/SnO p-n heterojunction under visible-light irradiation
    Zhang, Rui
    Wang, Qi
    Zhang, Jun
    Lu, Qipeng
    Liu, Wenxiu
    Yin, Shu
    Cao, Wenbin
    NANOTECHNOLOGY, 2019, 30 (43)
  • [42] Hierarchical ZnIn2S4: A promising cocatalyst to boost visible-light-driven photocatalytic hydrogen evolution of In(OH)3
    Geng, Mengjie
    Peng, Yanhua
    Zhang, Yan
    Guo, Xinlei
    Yu, Fengkai
    Yang, Xiaolong
    Xie, Guangwen
    Don, Wensheng
    Liu, Chunling
    Li, Jifan
    Yu, Jianqiang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (12) : 5787 - 5798
  • [43] Three-Dimensional Core-Shell Nanorod Arrays for Efficient Visible-Light Photocatalytic H2 Production
    You, Daotong
    Xu, Chunxiang
    Wang, Jing
    Su, Wenyue
    Zhang, Wei
    Zhao, Jie
    Qin, Feifei
    Liu, Yanjun
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (41) : 35184 - 35193
  • [44] Synthesis and photocatalytic properties of core-shell TiO2@ZnIn2S4 photocatalyst
    Yuan, Wen-Hui
    Xia, Zi-Long
    Li, Li
    CHINESE CHEMICAL LETTERS, 2013, 24 (11) : 984 - 986
  • [45] Construction of ZnIn2S4/Bi2MoO6 heterojunction enhancement photocatalytic hydrogen evolution performance under visible light
    Gao, Chenmei
    Xie, Yu
    Chen, Yong
    Ling, Yun
    Ma, Yongcun
    Zhang, Yifan
    Shao, Yi
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 52 : 90 - 99
  • [46] Preparation of a MWCNTs/ZnIn2S4 composite and its enhanced photocatalytic hydrogen production under visible-light irradiation
    Chai, Bo
    Peng, Tianyou
    Zeng, Peng
    Zhang, Xiaohu
    DALTON TRANSACTIONS, 2012, 41 (04) : 1179 - 1186
  • [47] Controlled Formation of TiO2/MoS2 Core-Shell Heterostructures with Enhanced Visible-Light Photocatalytic Activities
    Wang, Chuanxi
    Lin, Huihui
    Liu, Zhenyu
    Wu, Jiapeng
    Xu, Zhenzhu
    Zhang, Chi
    PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, 2016, 33 (04) : 221 - 227
  • [48] A hollow core-shell structure material NiCo2S4@Ni2P with uniform heterojunction for efficient photocatalytic H2 evolution reaction
    Zhao, Sheng
    Xu, Jing
    Liu, Zeying
    Li, Yanru
    NEW JOURNAL OF CHEMISTRY, 2019, 43 (47) : 18876 - 18887
  • [49] BiVO4@TiO2 core-shell hybrid mesoporous nanofibers towards efficient visible-light-driven photocatalytic hydrogen production
    Hou, Huilin
    Wang, Lin
    Gao, Fengmei
    Yang, Xianfeng
    Yang, Weiyou
    JOURNAL OF MATERIALS CHEMISTRY C, 2019, 7 (26) : 7858 - 7864
  • [50] Efficient photocatalytic hydrogen evolution over Cu3Mo2O9/TiO2 p-n heterojunction
    Huang, Wenqian
    Fu, Zhongyuan
    Hu, Xiaoyun
    Wang, Qing
    Fan, Jun
    Liu, Enzhou
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 904