A New Maximum Simplex Volume Method Based on Householder Transformation for Endmember Extraction

被引:40
作者
Liu, Junmin [1 ]
Zhang, Jiangshe [1 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, Fac Sci, Xian 710049, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2012年 / 50卷 / 01期
基金
中国国家自然科学基金;
关键词
Endmember extraction; maximum simplex volume; simplex growing algorithm (SGA); vertex component analysis (VCA); INDEPENDENT COMPONENT ANALYSIS; ALGORITHM;
D O I
10.1109/TGRS.2011.2158829
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Endmember extraction is very important in hyperspectral image analysis. The accurate identification of endmembers enables target detection and classification and efficient spectral unmixing. Although a number of endmember extraction algorithms have been proposed, such as two state-of-the-art algorithms-vertex component analysis (VCA) and simplex growing algorithm (SGA)-it is still a rather challenging task. In this paper, a new maximum simplex volume method based on Householder transformation (HT), referred to as maximum volume by HT (MVHT), is presented for endmember extraction. The proposed algorithm provides consistent results with low computational complexity, which overcomes the disadvantage of the inconsistent result of VCA and the shortcoming of the high computational cost of SGA resulted from calculating the simplex volume. A comparative study and analysis are conducted among the three endmember extraction algorithms, VCA, SGA, and MVHT, on both simulated and real hyperspectral data. The obtained experimental results demonstrate that the proposed MVHT algorithm generally provides a competitive or even better performance over VCA and SGA.
引用
收藏
页码:104 / 118
页数:15
相关论文
共 35 条
[1]  
[Anonymous], 2008, IGARSS 2008, DOI DOI 10.1109/IGARSS.2008.4779330
[2]  
[Anonymous], 1995, 5 ANN JPL AIRB EARTH
[3]   ICE: A statistical approach to identifying endmembers in hyperspectral images [J].
Berman, M ;
Kiiveri, H ;
Lagerstrom, R ;
Ernst, A ;
Dunne, R ;
Huntington, JF .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2004, 42 (10) :2085-2095
[4]   A VARIABLE SPLITTING AUGMENTED LAGRANGIAN APPROACH TO LINEAR SPECTRAL UNMIXING [J].
Bioucas-Dias, Jose M. .
2009 FIRST WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING, 2009, :1-4
[5]   Hyperspectral subspace identification [J].
Bioucas-Dias, Jose M. ;
Nascimento, Jose M. P. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (08) :2435-2445
[6]   A Convex Analysis-Based Minimum-Volume Enclosing Simplex Algorithm for Hyperspectral Unmixing [J].
Chan, Tsung-Han ;
Chi, Chong-Yung ;
Huang, Yu-Min ;
Ma, Wing-Kin .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2009, 57 (11) :4418-4432
[7]   A new growing method for simplex-based endmember extraction algorithm [J].
Chang, Chein-I ;
Wu, Chao-Cheng ;
Liu, Wei-min ;
Ouyang, Yen-Chieh .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (10) :2804-2819
[8]   Estimation of number of spectrally distinct signal sources in hyperspectral imagery [J].
Chang, CI ;
Du, Q .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2004, 42 (03) :608-619
[9]   MINIMUM-VOLUME TRANSFORMS FOR REMOTELY-SENSED DATA [J].
CRAIG, MD .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1994, 32 (03) :542-552
[10]   Semi-supervised linear spectral unmixing using a hierarchical Bayesian model for hyperspectral imagery [J].
Dobigeon, Nicolas ;
Tourneret, Jean-Yves ;
Chang, Chein-I .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (07) :2684-2695