A Decomposition Technique for Nonlinear Dynamical System Analysis

被引:46
作者
Anderson, James [1 ]
Papachristodoulou, Antonis [1 ]
机构
[1] Univ Oxford, Dept Engn Sci, Oxford OX1 3PJ, England
基金
英国生物技术与生命科学研究理事会; 英国工程与自然科学研究理事会;
关键词
Large-scale systems; nonlinear systems; sum of squares (SOS); LINEAR-SYSTEMS; STABILITY; OPTIMIZATION; MATRICES; SUM;
D O I
10.1109/TAC.2011.2175058
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A method for analyzing large-scale nonlinear dynamical systems by decomposing them into coupled lower order subsystems that are sufficiently simple for computational analysis is presented. It is shown that the decomposition approach can be used to scale the Sum of Squares programming framework for nonlinear systems analysis. The method constructs subsystem Lyapunov functions which are used to form a composite Lyapunov function for the whole system. Further computational savings are achieved if a method based on sparsity maximization is used to obtain the subsystem Lyapunov functions.
引用
收藏
页码:1516 / 1521
页数:6
相关论文
共 27 条
[1]   INTERIOR-POINT METHODS IN SEMIDEFINITE PROGRAMMING WITH APPLICATIONS TO COMBINATORIAL OPTIMIZATION [J].
ALIZADEH, F .
SIAM JOURNAL ON OPTIMIZATION, 1995, 5 (01) :13-51
[2]  
Anderson J., 2010, P IEEE C DEC CONTR A, P6565
[3]  
Anderson J, 2010, P AMER CONTR CONF, P4492
[4]  
[Anonymous], 2002, NONLINEAR SYSTEMS
[6]  
Bailey F. N., 1965, Journal of the Society for Industrial and Applied Mathematics, Series A: Control, V3, P443
[7]   Estimating the domain of attraction for uncertain polynomial systems [J].
Chesi, G .
AUTOMATICA, 2004, 40 (11) :1981-1986
[8]   LMI Techniques for Optimization Over Polynomials in Control: A Survey [J].
Chesi, Graziano .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2010, 55 (11) :2500-2510
[9]   BLOCK DIAGONALLY DOMINANT MATRICES AND GENERALIZATIONS OF GERSCHGORIN CIRCLE THEOREM [J].
FEINGOLD, DG ;
VARGA, RS .
PACIFIC JOURNAL OF MATHEMATICS, 1962, 12 (04) :1241-&
[10]  
GODSIL C, 2000, ALGEBRAIC GRAPH THEO