Fast live-cell conventional fluorophore nanoscopy with ImageJ through super-resolution radial fluctuations

被引:458
作者
Gustafsson, Nils [1 ,2 ]
Culley, Sian [1 ]
Ashdown, George [3 ]
Owen, Dylan M. [3 ]
Pereira, Pedro Matos [1 ]
Henriques, Ricardo [1 ]
机构
[1] UCL, MRC Lab Mol Cell Biol, Dept Cell & Dev Biol, Quantitat Imaging & Nanobiophys Grp, Gower St, London WC1E 6BT, England
[2] UCL, Ctr Math & Phys Life Sci & Expt Biol CoMPLEX, Gower St, London WC1E 6BT, England
[3] Kings Coll London, Randall Div Cell & Mol Biophys, Dept Phys, London SE1 1UL, England
基金
欧洲研究理事会; 英国生物技术与生命科学研究理事会; 英国医学研究理事会; 英国工程与自然科学研究理事会;
关键词
SINGLE-MOLECULE LOCALIZATION; STRUCTURED ILLUMINATION MICROSCOPY; FLUORESCENCE MICROSCOPY; DIFFRACTION-LIMIT; RESOLUTION; RECONSTRUCTION; ALGORITHM; DYNAMICS; SYMMETRY; STORM;
D O I
10.1038/ncomms12471
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Despite significant progress, high-speed live-cell super-resolution studies remain limited to specialized optical setups, generally requiring intense phototoxic illumination. Here, we describe a new analytical approach, super-resolution radial fluctuations (SRRF), provided as a fast graphics processing unit-enabled ImageJ plugin. In the most challenging data sets for super-resolution, such as those obtained in low-illumination live-cell imaging with GFP, we show that SRRF is generally capable of achieving resolutions better than 150 nm. Meanwhile, for data sets similar to those obtained in PALM or STORM imaging, SRRF achieves resolutions approaching those of standard single-molecule localization analysis. The broad applicability of SRRF and its performance at low signal-to-noise ratios allows super-resolution using modern widefield, confocal or TIRF microscopes with illumination orders of magnitude lower than methods such as PALM, STORM or STED. We demonstrate this by super-resolution live-cell imaging over timescales ranging from minutes to hours.
引用
收藏
页数:9
相关论文
共 29 条
[1]   Molecular Flow Quantified beyond the Diffraction Limit by Spatiotemporal Image Correlation of Structured Illumination Microscopy Data [J].
Ashdown, George W. ;
Cope, Andrew ;
Wiseman, Paul W. ;
Owen, Dylan M. .
BIOPHYSICAL JOURNAL, 2014, 107 (09) :L21-L23
[2]   Fourier ring correlation as a resolution criterion for super-resolution microscopy [J].
Banterle, Niccolo ;
Khanh Huy Bui ;
Lemke, Edward A. ;
Beck, Martin .
JOURNAL OF STRUCTURAL BIOLOGY, 2013, 183 (03) :363-367
[3]   Imaging intracellular fluorescent proteins at nanometer resolution [J].
Betzig, Eric ;
Patterson, George H. ;
Sougrat, Rachid ;
Lindwasser, O. Wolf ;
Olenych, Scott ;
Bonifacino, Juan S. ;
Davidson, Michael W. ;
Lippincott-Schwartz, Jennifer ;
Hess, Harald F. .
SCIENCE, 2006, 313 (5793) :1642-1645
[4]  
Cox S, 2012, NAT METHODS, V9, P195, DOI [10.1038/nmeth.1812, 10.1038/NMETH.1812]
[5]   Assessing resolution in super-resolution imaging [J].
Demmerle, Justin ;
Wegel, Eva ;
Schermelleh, Lothar ;
Dobbie, Ian M. .
METHODS, 2015, 88 :3-10
[6]   Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI) [J].
Dertinger, T. ;
Colyer, R. ;
Iyer, G. ;
Weiss, S. ;
Enderlein, J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (52) :22287-22292
[7]  
Geissbuehler S., 2012, Opt Nanoscopy, V1, P4, DOI DOI 10.1186/2192-2853-1-4
[8]   Comparison between SOFI and STORM [J].
Geissbuehler, Stefan ;
Dellagiacoma, Claudio ;
Lasser, Theo .
BIOMEDICAL OPTICS EXPRESS, 2011, 2 (03) :408-420
[9]   Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy [J].
Gustafsson, MGL .
JOURNAL OF MICROSCOPY, 2000, 198 (02) :82-87
[10]   Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes [J].
Heilemann, Mike ;
van de Linde, Sebastian ;
Schuttpelz, Mark ;
Kasper, Robert ;
Seefeldt, Britta ;
Mukherjee, Anindita ;
Tinnefeld, Philip ;
Sauer, Markus .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (33) :6172-6176