Lp boundedness of rough bi-parameter Fourier integral operators

被引:25
作者
Hong, Qing [1 ]
Lu, Guozhen [2 ]
Zhang, Lu [3 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
[2] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
[3] SUNY Binghamton, Dept Math, Binghamton, NY 13902 USA
关键词
Bi-parameter Fourier integral operators; Seeger-Sogge-Stein decomposition; L-p boundedness; non-smooth amplitude and phase functions; non-degeneracy condition; PSEUDODIFFERENTIAL-OPERATORS; MULTIPLIER OPERATORS; MULTIPARAMETER; THEOREMS; SPACES;
D O I
10.1515/forum-2016-0221
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we will investigate the boundedness of the bi-parameter Fourier integral operators (or FIOs for short) of the following form: T(f)(x) = 1/(2 pi)(2n) integral(R2n) e(i phi(x, xi, eta)) center dot a(x, xi, eta) center dot(f) over cap(xi, eta) d xi d eta, where x = (x(1), x(2)) epsilon R-n x R-n and xi, eta epsilon R-n\{0}, a(x, xi, eta) epsilon (LBS rho m)-B-infinity is the amplitude, and the phase function is of the form phi(x, xi, eta) = phi(1) (x(1), xi) + phi(2) (x(2), eta), with phi(1), phi(2) epsilon L-infinity Phi(2) (R-n x R-n\{0}), and satisfies a certain rough non-degeneracy condition (see (2.2)). The study of these operators are motivated by the L-p estimates for one-parameter FIOs and bi-parameter Fourier multipliers and pseudo-differential operators. We will first define the bi-parameter FIOs and then study the L-p boundedness of such operators when their phase functions have compact support in frequency variables with certain necessary non-degeneracy conditions. We will then establish the L-p boundedness of the more general FIOs with amplitude a(x, xi, eta) epsilon (LBS rho m)-B-infinity and non-smooth phase function phi(x, xi, eta) on x satisfying a rough non-degeneracy condition.
引用
收藏
页码:87 / 107
页数:21
相关论文
共 26 条
[1]  
CALDERON AP, 1971, J MATH SOC JPN, V23, P374
[2]   Hormander type theorems for multi-linear and multi-parameter Fourier multiplier operators with limited smoothness [J].
Chen, Jiao ;
Lu, Guozhen .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 101 :98-112
[3]   Boundedness of multi-parameter Fourier multiplier operators on Triebel-Lizorkin and Besov-Lipschitz spaces [J].
Chen, Lu ;
Lu, Guozhen ;
Luo, Xiang .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 134 :55-69
[4]   On the global boundedness of Fourier integral operators [J].
Cordero, Elena ;
Nicola, Fabio ;
Rodino, Luigi .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2010, 38 (04) :373-398
[5]   GLOBAL Lp CONTINUITY OF FOURIER INTEGRAL OPERATORS [J].
Coriasco, Sandro ;
Ruzhansky, Michael .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 366 (05) :2575-2596
[6]   LP ESTIMATES FOR MULTI-LINEAR AND MULTI-PARAMETER PSEUDO-DIFFERENTIAL OPERATORS [J].
Dai, Wei ;
Lu, Guozhen .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2015, 143 (03) :567-597
[7]  
Dos Santos Ferreira D., 2014, Mem. Amer. Math. Soc., V229
[8]   SINGULAR-INTEGRALS ON PRODUCT-SPACES [J].
FEFFERMAN, R ;
STEIN, EM .
ADVANCES IN MATHEMATICS, 1982, 45 (02) :117-143
[9]  
Fujiwara D., 1977, J. Fac. Sci. Univ. Tokyo Sect. IA. Math, V24, P327
[10]   Lp estimates for bi-parameter and bilinear Fourier integral operators [J].
Hong, Qing ;
Zhang, Lu .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2017, 33 (02) :165-186