Specific Heat Determination of Metallic Thin Films at Room Conditions

被引:7
作者
Lugo, J. M. [1 ]
Rejon, V. [1 ]
Oliva, A. I. [1 ]
机构
[1] IPN, Dept Fis Aplicada, Ctr Invest & Estudios Avanzados, Unidad Merida, Merida 97310, Yucatan, Mexico
来源
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME | 2015年 / 137卷 / 05期
关键词
micro/nanoscale heat transfer; experimental techniques; thermophysical properties; ELECTRICAL-RESISTIVITY MODEL; SI-N MEMBRANE; POLYCRYSTALLINE FILMS; CAPACITY MEASUREMENTS; THERMAL-CONDUCTIVITY; MICROCALORIMETER; REFLECTION;
D O I
10.1115/1.4029595
中图分类号
O414.1 [热力学];
学科分类号
摘要
A methodology to evaluate the specific heat of metallic thin films at constant pressure and 300K by means of the heating profile is proposed. Changes on the electrical resistance of metallic films after the application of short electric pulses (20-500 mu s) are correlated with changes of temperature of the films. Electric pulses are applied on films by an implemented electronic device. A proposed analytical thermal model predicts the correlation between the duration of the electric pulses and the thermal profiles of the film/substrate systems. The analytical thermal model and the measured thermal profiles results are useful to evaluate the specific heat of films. Following this methodology, Au and Al nanofilms evaporated on glass substrates were analyzed. Results indicate that specific heat values of Au films decrease from (229 +/- 15) J/kg K to (125 +/- 8) J/kg K, and for Al films from (1444 +/- 89) J/kg K to (947 +/- 53) J/kg K, for film thicknesses from 20 to 200 nm.
引用
收藏
页数:11
相关论文
共 33 条
[1]   Specific heat of endohedral and higher fullerene thin films [J].
Allen, K ;
Hellman, F .
JOURNAL OF CHEMICAL PHYSICS, 1999, 111 (12) :5291-5294
[2]   HEAT-CAPACITY MEASUREMENTS ON SMALL SAMPLES AT LOW-TEMPERATURES [J].
BACHMANN, R ;
SCHWALL, RE ;
THOMAS, HU ;
ZUBECK, RB ;
KING, CN ;
KIRSCH, HC ;
DISALVO, FJ ;
GEBALLE, TH ;
LEE, KN ;
HOWARD, RE ;
GREENE, RL .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1972, 43 (02) :205-&
[3]   Development of a relaxation calorimeter for temperatures between 0.05 and 4 K [J].
Brando, M. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2009, 80 (09)
[4]   Heat transport in dielectric thin films and at solid-solid interfaces [J].
Cahill, DG .
MICROSCALE THERMOPHYSICAL ENGINEERING, 1997, 1 (02) :85-109
[5]   Surface and grain boundary contributions in the electrical resistivity of metallic nanofilms [J].
Camacho, Juan M. ;
Oliva, A. I. .
THIN SOLID FILMS, 2006, 515 (04) :1881-1885
[6]   Thermodynamic measurements of submilligram bulk samples using a membrane-based "calorimeter on a chip" [J].
Cooke, David W. ;
Michel, K. J. ;
Hellman, F. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2008, 79 (05)
[7]  
Cottey A.A., 1968, Thin Solid films, V1, P297, DOI DOI 10.1016/0040-6090(68)90047-3
[8]   A sample-saving method for heat capacity measurements on powders using relaxation calorimetry [J].
Dachs, Edgar ;
Benisek, Artur .
CRYOGENICS, 2011, 51 (08) :460-464
[9]   Ultrasensitive, fast, thin-film differential scanning calorimeter [J].
Efremov, MY ;
Olson, EA ;
Zhang, M ;
Schiettekatte, F ;
Zhang, ZS ;
Allen, LH .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (01) :179-191
[10]   Prediction of size effect on thermal conductivity of nanoscale metallic films [J].
Feng, Bo ;
Li, Zhixin ;
Zhang, Xing .
THIN SOLID FILMS, 2009, 517 (08) :2803-2807