On level-2 condition number for the weighted Moore-Penrose inverse

被引:10
作者
Lin, Lijing [2 ]
Lu, Tzon-Tzer [3 ]
Wei, Yimin [1 ,4 ]
机构
[1] Fudan Univ, Inst Math, Sch Math Sci, Shanghai 200433, Peoples R China
[2] Fudan Univ, Inst Math, Shanghai 200433, Peoples R China
[3] Natl Sun Yat Sen Univ, Dept Appl Math, Kaohsiung 80424, Taiwan
[4] Fudan Univ, Educ Minist, Key Lab Nonlinear Sci, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
weighted Moore-Penrose inverse; condition number; level-2 condition number; perturbation; weighted linear least squares problem;
D O I
10.1016/j.camwa.2007.06.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present characterizations for the level-2 condition number of the weighted Moore-Penrose inverse, i.e., cond(MN)(A) <= cond(MN)([2]) (A) <= cond(MN)(A) 1. where cond(MN)(A) is the condition number of the weighted Moore-Penrose inverse of a rectangular matrix and cond(MN)([2])(A) is the level-2 condition number of this problem. This paper extends the result by Cucker, Diao and Wei [F. Cucker, H. Diao, Y. Wei, On the level-2 condition number for Moore-Penrose inversion, 2005, Unpublished report] and improves the results by Wei and Wang [Y. Wei, D. Wang, Condition numbers and perturbation of weighted Moore-Penrose inverse and weighted linear least squares problem, Appl. Math. Comput. 145 (2003) 45-58]. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:788 / 800
页数:13
相关论文
共 27 条
[1]  
Ben-Israel A., 2003, GEN INVERSES THEORY, V15
[2]   A note on level-2 condition numbers [J].
Cheung, D ;
Cucker, F .
JOURNAL OF COMPLEXITY, 2005, 21 (03) :314-319
[3]   Smoothed analysis of some condition numbers [J].
Cucker, F ;
Diao, H ;
Wei, Y .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2006, 13 (01) :71-84
[4]  
CUCKER F, 2005, UNPUB LEVEL 2 CONDIT
[5]   On mixed and componentwise condition numbers for Moore-Penrose inverse and linear least squares problems [J].
Cucker, Felipe ;
Diao, Huaian ;
Wei, Yimin .
MATHEMATICS OF COMPUTATION, 2007, 76 (258) :947-963
[6]   ON CONDITION NUMBERS AND THE DISTANCE TO THE NEAREST ILL-POSED PROBLEM [J].
DEMMEL, JW .
NUMERISCHE MATHEMATIK, 1987, 51 (03) :251-289
[7]  
Golub G. H., 1996, MATRIX COMPUTATIONS
[8]   On the condition number of linear least squares problems in a weighted Frobenius norm [J].
Gratton, S .
BIT NUMERICAL MATHEMATICS, 1996, 36 (03) :523-530
[9]   Perturbation bounds for constrained and weighted least squares problems [J].
Gulliksson, M ;
Jin, XQ ;
Wei, YM .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 349 :221-232
[10]   Perturbation identities for regularized Tikhonov inverses and weighted pseudoinverses [J].
Gulliksson, ME ;
Wedin, PÅ ;
Wei, YM .
BIT NUMERICAL MATHEMATICS, 2000, 40 (03) :513-523