Friction reduction using Nanothin Titanium layers on anodized aluminum as potential bioceramic material

被引:10
作者
Matijosius, Tadas [1 ]
Pivoriunas, Augustas [2 ]
Cebatariuniene, Alina [2 ]
Tunaitis, Virginijus [2 ]
Staisiunas, Laurynas [1 ]
Stalnionis, Giedrius [1 ]
Rucinskiene, Alma [1 ]
Asadauskas, Svajus J. [1 ]
机构
[1] Ctr Phys Sci & Technol FTMC, State Res Inst, Sauletekio 3, LT-10257 Vilnius, Lithuania
[2] Ctr Innovat Med IMC, State Res Inst, Santariskiu G 5, LT-08406 Vilnius, Lithuania
关键词
Friction; TiO2; Biomedical applications; Biocompatibility; THIN-FILMS; AL2O3; RESISTANCE; BEHAVIOR; BRACKET;
D O I
10.1016/j.ceramint.2020.03.105
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
While widespread industrially, anodized aluminum also finds bioengineering applications due to the abundance of nanopores and bioceramic nature of Al2O3. In this study, nanothin layers of TiO2 were deposited on 1050 and 6082 alloys to evaluate biocompatibility and friction. Periodontal ligament stromal (PDLS) cells showed higher adhesion on anodized 1050 alloy after 120 h incubation. Layers of Ti or TiO2 were formed on nanoporous anodized surfaces using magnetron sputtering or Atomic Layer Deposition (ALD), respectively. PDLS cell adhesion improved on nearly all sputtered specimens, meanwhile, ALD-deposited TiO2 layers were beneficial only to 6082 alloy. Both deposition methods highly improved the resistance to incidental friction for nanothin layers of 10-75 nm thickness. Counterintuitively, the tribological performance was much poorer both on thinner and thicker layers, such as 2.3 mu m Ti layer or titanium alloy BT1. Improvements in biocompatibility, friction reduction and other mechanical properties provide new opportunities for anodized aluminum with nanothin Ti layers as an innovative bioceramic material, in particular, due to its light weight and easy machinability.
引用
收藏
页码:15581 / 15593
页数:13
相关论文
共 43 条
[1]   Al2O3 and TiO2 Atomic Layer Deposition on Copper for Water Corrosion Resistance [J].
Abdulagatov, A. I. ;
Yan, Y. ;
Cooper, J. R. ;
Zhang, Y. ;
Gibbs, Z. M. ;
Cavanagh, A. S. ;
Yang, R. G. ;
Lee, Y. C. ;
George, S. M. .
ACS APPLIED MATERIALS & INTERFACES, 2011, 3 (12) :4593-4601
[2]   The nanoporous anodic alumina oxide formed by two-step anodization [J].
Ates, Sevgi ;
Baran, Evrim ;
Yazici, Birgul .
THIN SOLID FILMS, 2018, 648 :94-102
[3]   Tantalum- and Silver-Doped Titanium Dioxide Nanosheets Film: Influence on Interfacial Bonding Structure and Hardness of the Surface System [J].
Azadmanjiri, Jalal ;
Wang, James ;
Berndt, Christopher C. ;
Kapoor, Ajay ;
Zhu, De Ming ;
Ang, Andrew S. M. ;
Srivastava, Vijay K. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2017, 56 (01) :434-439
[4]   Fatigue behaviour of notched PVD-coated titanium components [J].
Baragetti, S. ;
Lusvarghi, L. ;
Mantini, F. Pighetti ;
Tordini, F. .
ADVANCES IN FRACTURE AND DAMAGE MECHANICS VI, 2007, 348-349 :313-+
[5]   Fatigue resistance of steel and titanium PVD coated spur gears [J].
Baragetti, Sergio .
INTERNATIONAL JOURNAL OF FATIGUE, 2007, 29 (9-11) :1893-1903
[6]   Measurement of lubricant layer thickness in anodised alumina using confocal fluorescence microscopy [J].
Bikulcius, G. ;
Valius, M. ;
Rucinskiene, A. ;
Jankauskas, S. ;
Asadauskas, S. J. .
TRANSACTIONS OF THE INSTITUTE OF METAL FINISHING, 2017, 95 (04) :226-232
[7]  
Bosund M., 2016, SCI LETT, P1
[8]   Nanoporous Aluminium Oxide Membranes as Cell Interfaces [J].
Brueggemann, Dorothea .
JOURNAL OF NANOMATERIALS, 2013, 2013
[9]   Surface Wettability of Macroporous Anodized Aluminum Oxide [J].
Buijnsters, Josephus G. ;
Zhong, Rui ;
Tsyntsaru, Natalia ;
Celis, Jean-Pierre .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (08) :3224-3233
[10]   Microcarrier culture enhances osteogenic potential of human periodontal ligament stromal cells [J].
Cebatariuniene, Alina ;
Jarmalaviciute, Akvile ;
Tunaitis, Virginijus ;
Puriene, Alina ;
Venalis, Algirdas ;
Pivoriunas, Augustas .
JOURNAL OF CRANIO-MAXILLOFACIAL SURGERY, 2017, 45 (06) :845-854