Realization of an Asymmetric Non-Aqueous Redox Flow Battery through Molecular Design to Minimize Active Species Crossover and Decomposition

被引:48
作者
Shrestha, Anuska [1 ]
Hendriks, Koen H. [1 ]
Sigman, Mathew S. [2 ]
Minteer, Shelley D. [2 ]
Sanford, Melanie S. [1 ]
机构
[1] Univ Michigan, Joint Ctr Energy Storage Res, Dept Chem, 930 North Univ Ave, Ann Arbor, MI 48104 USA
[2] Univ Utah, Joint Ctr Energy Storage Res, Dept Chem, 315 South 1400 East, Salt Lake City, UT 84112 USA
关键词
anolyte decomposition; asymmetric; crossover; non-aqueous; redox flow batteries; ELECTROCHEMICAL PROPERTIES; DICYANOMETHYLENE; STORAGE; ELECTROLYTES; PERSISTENT; CATHOLYTE; POLYMERS; DENSITY; SYSTEMS;
D O I
10.1002/chem.202000749
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This communication presents a mechanism-based approach to identify organic electrolytes for non-aqueous redox flow batteries (RFBs). Symmetrical flow cell cycling of a pyridinium anolyte and a cyclopropenium catholyte resulted in extensive capacity fade due to competing decomposition of the pyridinium species. Characterization of this decomposition pathway enabled the rational design of next-generation anolyte/catholyte pairs with dramatically enhanced cycling performance. Three factors were identified as critical for slowing capacity fade: (1) separating the anolyte-catholyte in an asymmetric flow cell using an anion exchange membrane (AEM); (2) moving from monomeric to oligomeric electrolytes to limit crossover through the AEM; and (3) removing the basic carbonyl moiety from the anolyte to slow the protonation-induced decomposition pathway. Ultimately, these modifications led to a novel anolyte-catholyte pair that can be cycled in an AEM-separated asymmetric RFB for 96 h with >95 % capacity retention at an open circuit voltage of 1.57 V.
引用
收藏
页码:5369 / 5373
页数:5
相关论文
共 60 条
[1]  
[Anonymous], ANGEW CHEM
[2]   Application of the dianion croconate violet for symmetric organic non-aqueous redox flow battery electrolytes [J].
Armstrong, Craig G. ;
Hogue, Ross W. ;
Toghill, Kathryn E. .
JOURNAL OF POWER SOURCES, 2019, 440
[3]   Designing Redox-Active Oligomers for Crossover-Free, Nonaqueous Redox-Flow Batteries with High Volumetric Energy Density [J].
Baran, Miranda J. ;
Braten, Miles N. ;
Montoto, Elena C. ;
Gossage, Zachary T. ;
Ma, Lin ;
Chenard, Etienne ;
Moore, Jeffrey S. ;
Rodriguez-Lopez, Joaquin ;
Helms, Brett A. .
CHEMISTRY OF MATERIALS, 2018, 30 (11) :3861-3866
[4]   Redox Active Polymers as Soluble Nanomaterials for Energy Storage [J].
Burgess, Mark ;
Moore, Jeffrey S. ;
Rodriguez-Lopez, Joaquin .
ACCOUNTS OF CHEMICAL RESEARCH, 2016, 49 (11) :2649-2657
[5]   Cycling Analysis of a Quinone-Bromide Redox Flow Battery [J].
Chen, Qing ;
Eisenach, Louise ;
Aziz, Michael J. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (01) :A5057-A5063
[6]   A high-performance all-metallocene-based, non-aqueous redox flow battery [J].
Ding, Yu ;
Zhao, Yu ;
Li, Yutao ;
Goodenough, John B. ;
Yu, Guihua .
ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (02) :491-497
[7]  
Doane L.M., 1982, Angew. Chem., V94, P649
[8]   ELECTROCHEMICAL OXIDATION OF CROCONATE SALTS - EVIDENCE OF THE CHEMICAL EQUIVALENCE OF THE CARBONYL OXYGEN ATOM AND THE DICYANOMETHYLENE GROUP [J].
DOANE, LM ;
FATIADI, AJ .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION IN ENGLISH, 1982, 21 (08) :635-636
[9]  
Doris S., 2017, Angew. Chem, V129, P1617, DOI [10.1002/ange.201610582, DOI 10.1002/ANGE.201610582]
[10]   Macromolecular Design Strategies for Preventing Active-Material Crossover in Non-Aqueous All-Organic Redox-Flow Batteries [J].
Doris, Sean E. ;
Ward, Ashleigh L. ;
Baskin, Artem ;
Frischmann, Peter D. ;
Gavvalapalli, Nagarjuna ;
Chenard, Etienne ;
Sevov, Christo S. ;
Prendergast, David ;
Moore, Jeffrey S. ;
Helms, Brett A. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (06) :1595-1599