Learning Lightweight Low-Light Enhancement Network Using Pseudo Well-Exposed Images

被引:13
作者
Ko, Seonggwan [1 ]
Park, Jinsun [2 ]
Chae, Byungjoo [3 ]
Cho, Donghyeon [3 ]
机构
[1] Chungnam Natl Univ, Dept Comp Sci & Engn, Daejeon 34134, South Korea
[2] Pusan Natl Univ, Sch Comp Sci & Engn, Busan 46241, South Korea
[3] Chungnam Natl Univ, Dept Elect Engn, Daejeon 34134, South Korea
关键词
Training; Feature extraction; Knowledge engineering; Image enhancement; Lighting; Dynamic range; Computational modeling; Low-light enhancement; pseudo labels; knowledge distillation; DEEP CNN; RETINEX;
D O I
10.1109/LSP.2021.3134943
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Recently, there has been growing attention on deep learning-based low-light image enhancement algorithms. With this interest, various synthetic low-light image datasets have been released publicly. However, real-world low-light and well-exposed image pair datasets are still lacking. In this paper, we propose a real-world low-light image dataset and a practical lightweight low-light image enhancement network. In order to construct a large-scale real-world low-light dataset, we have not only captured under-exposed images by ourselves but also collected under-exposed images from the Internet. Then, we produce pseudo well-exposed images for each low-light image. Using pairs of a real-world low-light image and a pseudo well-exposed image, we present a lightweight deep CNN model through knowledge distillation. Experimental results demonstrate the effectiveness and practicality of the proposed method on various datasets.
引用
收藏
页码:289 / 293
页数:5
相关论文
共 32 条
[1]   A dynamic histogram equalization for image contrast enhancement [J].
Abdullah-Al-Wadud, M. ;
Kabir, Md. Hasanul ;
Dewan, M. Ali Akber ;
Chae, Oksam .
IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2007, 53 (02) :593-600
[2]  
[Anonymous], 2015, P 3 INT C LEARN REPR
[3]  
Arjovsky M, 2017, PR MACH LEARN RES, V70
[4]  
Arora A., ABS210100850 ARXIV, V2021
[5]   Learning a Deep Single Image Contrast Enhancer from Multi-Exposure Images [J].
Cai, Jianrui ;
Gu, Shuhang ;
Zhang, Lei .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (04) :2049-2062
[6]   Learning to See in the Dark [J].
Chen, Chen ;
Chen, Qifeng ;
Xu, Jia ;
Koltun, Vladlen .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :3291-3300
[7]   Zero-Reference Deep Curve Estimation for Low-Light Image Enhancement [J].
Guo, Chunle ;
Li, Chongyi ;
Guo, Jichang ;
Loy, Chen Change ;
Hou, Junhui ;
Kwong, Sam ;
Cong, Runmin .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, :1777-1786
[8]   LIME: Low-Light Image Enhancement via Illumination Map Estimation [J].
Guo, Xiaojie ;
Li, Yu ;
Ling, Haibin .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (02) :982-993
[9]  
Hore Alain, 2010, Proceedings of the 2010 20th International Conference on Pattern Recognition (ICPR 2010), P2366, DOI 10.1109/ICPR.2010.579
[10]   EnlightenGAN: Deep Light Enhancement Without Paired Supervision [J].
Jiang, Yifan ;
Gong, Xinyu ;
Liu, Ding ;
Cheng, Yu ;
Fang, Chen ;
Shen, Xiaohui ;
Yang, Jianchao ;
Zhou, Pan ;
Wang, Zhangyang .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 :2340-2349