Projections of cones and the arithmetical rank of toric varieties

被引:13
作者
Katsabekis, A [1 ]
机构
[1] Univ Ioannina, Dept Math, Sect Algebra & Geometry, GR-45110 Ioannina, Greece
关键词
D O I
10.1016/j.jpaa.2004.12.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let I-M and I-N be defining ideals of toric varieties such that I-M is a projection of I-N, i.e. I-N subset of I-M We give necessary and sufficient conditions for the equality I-M = rad(I-N + (f(1),..., f(s))), where f(1),..., f(s) belong to I-M. Also, a method for finding toric varieties which are set-theoretic complete intersection is given. Finally, we apply our method in the computation of the arithmetical rank of certain toric varieties and provide the defining equations of the above toric varieties. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:133 / 147
页数:15
相关论文
共 15 条
[1]  
[Anonymous], 1994, COMMUTATIVE ALGEBRA
[2]  
BARILE M, 2002, QUEENS PAPERS PURE A, V123, P173
[3]   MONOMIAL GORENSTEIN CURVES IN A4 AS SET-THEORETIC COMPLETE INTERSECTIONS [J].
BRESINSKY, H .
MANUSCRIPTA MATHEMATICA, 1979, 27 (04) :353-358
[4]   Binomial ideals [J].
Eisenbud, D ;
Sturmfels, B .
DUKE MATHEMATICAL JOURNAL, 1996, 84 (01) :1-45
[5]   On systems of binomials in the ideal of a toric variety [J].
Eliahou, S ;
Villarreal, RH .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (02) :345-351
[6]   SYMBOLIC POWERS OF MONOMIAL CURVES [J].
ELIAHOU, S .
JOURNAL OF ALGEBRA, 1988, 117 (02) :437-456
[7]  
ELIAHOU S, 1984, LECT NOTES MATH, V1092, P229
[8]   GENERATORS AND RELATIONS OF ABELIAN SEMIGROUPS AND SEMIGROUP RINGS [J].
HERZOG, J .
MANUSCRIPTA MATHEMATICA, 1970, 3 (02) :175-&
[9]  
HERZOG J, UNPUB NOTE COMPLETE
[10]   Toric sets and orbits on toric varieties [J].
Katsabekis, A ;
Thoma, A .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2003, 181 (01) :75-83