Fractional stochastic Volterra equation perturbed by fractional Brownian motion

被引:3
作者
Zhang, Yinghan [1 ]
Yang, Xiaoyuan [1 ]
机构
[1] Beihang Univ, Dept Math, Minist Educ, LMIB, Beijing 100191, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Fractional Brownian motion; Fractional stochastic Volterra equation; Stochastic convolution; HEAT-EQUATION; HILBERT-SPACE; DRIVEN; NOISE;
D O I
10.1016/j.amc.2015.01.046
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a class of fractional stochastic Volterra equation of convolution type driven by infinite dimensional fractional Brownian motion with Hurst index h is an element of (0, 1). Base on the explicit formula for the scalar resolvent function and the properties of the Mittag-Leffler's function, the existence and regularity results of the stochastic convolution process are established. Separate proofs are required for the cases of Hurst parameter above and below 1/2 and it will turn out that the regularity of the solution increases with Hurst parameter h. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:20 / 36
页数:17
相关论文
共 35 条
[1]   Stochastic Heat Equation with Multiplicative Fractional-Colored Noise [J].
Balan, Raluca M. ;
Tudor, Ciprian A. .
JOURNAL OF THEORETICAL PROBABILITY, 2010, 23 (03) :834-870
[2]  
Biagini F, 2008, PROBAB APPL SER, P1
[3]   STOCHASTIC CAHN-HILLIARD EQUATION WITH FRACTIONAL NOISE [J].
Bo, Lijun ;
Jiang, Yiming ;
Wang, Yongjin .
STOCHASTICS AND DYNAMICS, 2008, 8 (04) :643-665
[4]   Mittag-Leffler's function and stochastic linear Volterra equations of convolution type [J].
Bonaccorsi, S ;
Tubaro, L .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2003, 21 (01) :61-78
[5]  
Bonaccorsi S., 2007, PROG PROBAB, V59, P37
[6]   Stochastic nonlinear beam equations [J].
Brzezniak, Z ;
Maslowski, B ;
Seidler, J .
PROBABILITY THEORY AND RELATED FIELDS, 2005, 132 (01) :119-149
[7]  
Chow P. L., 1999, DIFFERENTIAL INTEGRA, V12, P419
[8]  
Clement Ph., 1997, REND I MAT U TRIESTE, V29, P207
[9]  
Da Prato G., 2014, Stochastic Equations in Infinite Dimensions, DOI [DOI 10.1017/CBO9781107295513, 10.1017/CBO9780511666223, 10.1017/CBO9781107295513]
[10]   SEMILINEAR STOCHASTIC EQUATIONS IN A HILBERT SPACE WITH A FRACTIONAL BROWNIAN MOTION [J].
Duncan, T. E. ;
Maslowski, B. ;
Pasik-Duncan, B. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2009, 40 (06) :2286-2315