Positive solutions of anisotropic Yamabe-type equations in Rn

被引:3
作者
Monti, Roberto [1 ]
Morbidelli, Daniele [2 ]
机构
[1] Univ Padua, Dipartimento Matemat Pura & Applicata, I-35121 Padua, Italy
[2] Univ Bologna, Dipartmento Matemat, I-40127 Bologna, Italy
关键词
D O I
10.1090/S0002-9939-08-09579-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study entire positive solutions to the partial differential equation in R-n, Delta(x)u + (alpha + 1)(2) |x|(2 alpha) Delta(y)u = -|x|(2 alpha)u n+2/n-2, where x is an element of R-2, y is an element of Rn-2, n >= 3 and alpha > 0. We classify positive solutions with second order derivatives satisfying a suitable growth near the set x = 0.
引用
收藏
页码:4295 / 4304
页数:10
相关论文
共 13 条
[1]  
[Anonymous], MATH USSR SBORNIC
[2]   Green's functions for some highly degenerate elliptic operators [J].
Beals, R ;
Greiner, P ;
Gaveau, B .
JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 165 (02) :407-429
[3]   On the Grushin operator and hyperbolic symmetry [J].
Beckner, W .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (04) :1233-1246
[4]  
Franchi B., 1983, Ann. Sc. Norm. Super. Pisa, Cl. Sci., VIV, P523
[5]   Symmetry properties of positive entire solutions of Yamabe-type equations on groups of Heisenberg type [J].
Garofalo, N ;
Vassilev, D .
DUKE MATHEMATICAL JOURNAL, 2001, 106 (03) :411-448
[6]   Strong unique continuation properties of generalized Baouendi-Grushin operators [J].
Garofalo, Nicola ;
Vassilev, Dimiter .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (04) :643-663
[7]   Liouvelle-type theorems and Harnack-type inequalities for semilinear elliptic equations [J].
Li, YY ;
Zhang, L .
JOURNAL D ANALYSE MATHEMATIQUE, 2003, 90 (1) :27-87
[8]   Conservation laws for equations of mixed elliptic-hyperbolic and degenerate types [J].
Lupo, D ;
Payne, KR .
DUKE MATHEMATICAL JOURNAL, 2005, 127 (02) :251-290
[9]   Kelvin transform for Grushin operators and critical semilinear equations [J].
Monti, R ;
Morbidelli, D .
DUKE MATHEMATICAL JOURNAL, 2006, 131 (01) :167-202
[10]   Sobolev inequalities for weighted gradients [J].
Monti, Roberto .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2006, 31 (10) :1479-1504