Sensor fusion using EMG and vision for hand gesture classification in mobile applications

被引:6
作者
Ceolini, Enea [1 ,2 ]
Taverni, Gemma [1 ,2 ]
Khacef, Lyes [3 ]
Payvand, Melika [1 ,2 ]
Donati, Elisa [1 ,2 ]
机构
[1] Univ Zurich, Inst Neuroinformat, Zurich, Switzerland
[2] Swiss Fed Inst Technol, Zurich, Switzerland
[3] Univ Cote Azur, CNRS, LEAT, Nice, France
来源
2019 IEEE BIOMEDICAL CIRCUITS AND SYSTEMS CONFERENCE (BIOCAS 2019) | 2019年
关键词
Sensor fusion; surface EMG; event-based camera; hand gesture classification; mobile application;
D O I
10.1109/biocas.2019.8919210
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The discrimination of human gestures using wearable solutions is extremely important as a supporting technique for assisted living, healthcare of the elderly and neurorehabilitation. This paper presents a mobile electromyography (EMG) analysis framework to be an auxiliary component in physiotherapy sessions or as a feedback for neuroprosthesis calibration. We implemented a framework that allows the integration of multi-sensors, EMG and visual information, to perform sensor fusion and to improve the accuracy of hand gesture recognition tasks. In particular, we used an event-based camera adapted to run on the limited computational resources of mobile phones. We introduced a new publicly available dataset of sensor fusion for hand gesture recognition recorded from 10 subjects and used it to train the recognition models offline. We compare the online results of the hand gesture recognition using the fusion approach with the individual sensors with an improvement in the accuracy of 13% and 11%, for EMG and vision respectively, reaching 85%.
引用
收藏
页数:4
相关论文
共 16 条
[1]  
[Anonymous], 2007, JAER OPEN SOURCE PRO
[2]  
[Anonymous], 1994, TR9403 MERL
[3]   Classifier Level Fusion of Accelerometer and sEMG Signals for Automatic Fitness Activity Diarization [J].
Biagetti, Giorgio ;
Crippa, Paolo ;
Falaschetti, Laura ;
Turchetti, Claudio .
SENSORS, 2018, 18 (09)
[4]  
Brandli C., 2014, IEEE J SOLID STATE C, V49
[5]  
Donati E., 2018, 2018 IEEE BIOM CIRC, P1
[6]   Comparison of algorithms for estimation of EMG variables during voluntary isometric contractions [J].
Farina, D ;
Merletti, R .
JOURNAL OF ELECTROMYOGRAPHY AND KINESIOLOGY, 2000, 10 (05) :337-349
[7]  
Farina D., 2016, SURFACE ELECTROMYOGR, P540, DOI [10.1002/9781119082934.ch20, DOI 10.1002/9781119082934.CH20]
[8]   Gradient-based learning applied to document recognition [J].
Lecun, Y ;
Bottou, L ;
Bengio, Y ;
Haffner, P .
PROCEEDINGS OF THE IEEE, 1998, 86 (11) :2278-2324
[9]  
Lichtsteiner P., 2006, IEEE INT SOL STAT CI, P2060, DOI DOI 10.1109/ISSCC.2006.1696265
[10]  
Lungu Iulia-Alexandra, 2017, 2017 IEEE International Symposium on Circuits and Systems (ISCAS), DOI 10.1109/ISCAS.2017.8050403