Synthesis and characterization of single crystalline SnO2 nanorods by high-pressure pulsed laser deposition

被引:18
作者
Tien, L. C. [1 ]
Pearton, S. J. [1 ]
Norton, D. P. [1 ]
Ren, F. [2 ]
机构
[1] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA
[2] Univ Florida, Dept Chem Engn, Gainesville, FL 32611 USA
来源
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING | 2008年 / 91卷 / 01期
关键词
D O I
10.1007/s00339-007-4378-x
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Tin oxide (SnO2) nanorods were grown by high-pressure pulsed laser deposition (PLD). The nanorods were grown without the use of a catalyst but required high background pressure growth in order to realize small grain columnar growth and nanorod formation, with nanorod formation most favored on non-epitaxial substrates. The structures and morphology were characterized by field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM). X-ray diffraction and HRTEM analysis indicate that the as-grown SnO2 nanorods are single crystals with a rutile structure. The nanorods are approximately 50-90 nm in diameters and 1.5 mu m in length. This method provides an approach for large area synthesis of one dimensional SnO2 nanostructure materials.
引用
收藏
页码:29 / 32
页数:4
相关论文
共 33 条
[1]   SOLAR-CELL CHARACTERISTICS AND INTERFACIAL CHEMISTRY OF INDIUM-TIN-OXIDE-INDIUM PHOSPHIDE AND INDIUM-TIN-OXIDE-GALLIUM ARSENIDE JUNCTIONS [J].
BACHMANN, KJ ;
SCHREIBER, H ;
SINCLAIR, WR ;
SCHMIDT, PH ;
THIEL, FA ;
SPENCER, EG ;
PASTEUR, G ;
FELDMANN, WL ;
SREEHARSHA, K .
JOURNAL OF APPLIED PHYSICS, 1979, 50 (05) :3441-3446
[2]   Linear ethanol sensing of SnO2 nanorods with extremely high sensitivity [J].
Chen, YJ ;
Nie, L ;
Xue, XY ;
Wang, YG ;
Wang, TH .
APPLIED PHYSICS LETTERS, 2006, 88 (08)
[3]  
CHEN YJ, 2005, APPL PHYS LETT, V8
[4]   Large-scale, solution-phase growth of single-crystalline SnO2 nanorods [J].
Cheng, B ;
Russell, JM ;
Shi, WS ;
Zhang, L ;
Samulski, ET .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (19) :5972-5973
[5]   Functional nanoscale electronic devices assembled using silicon nanowire building blocks [J].
Cui, Y ;
Lieber, CM .
SCIENCE, 2001, 291 (5505) :851-853
[6]  
DASSOUMEN SK, 2006, J APPL PHYS, V99
[7]   Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices [J].
Duan, XF ;
Huang, Y ;
Cui, Y ;
Wang, JF ;
Lieber, CM .
NATURE, 2001, 409 (6816) :66-69
[8]   Growth of nanowire superlattice structures for nanoscale photonics and electronics [J].
Gudiksen, MS ;
Lauhon, LJ ;
Wang, J ;
Smith, DC ;
Lieber, CM .
NATURE, 2002, 415 (6872) :617-620
[9]   ZnO nanowire growth and devices [J].
Heo, YW ;
Norton, DP ;
Tien, LC ;
Kwon, Y ;
Kang, BS ;
Ren, F ;
Pearton, SJ ;
LaRoche, JR .
MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2004, 47 (1-2) :1-47
[10]   Depletion-mode ZnO nanowire field-effect transistor [J].
Heo, YW ;
Tien, LC ;
Kwon, Y ;
Norton, DP ;
Pearton, SJ ;
Kang, BS ;
Ren, F .
APPLIED PHYSICS LETTERS, 2004, 85 (12) :2274-2276