Brain Tumor Detection and Classification on MR Images by a Deep Wavelet Auto-Encoder Model

被引:29
|
作者
Abd El Kader, Isselmou [1 ]
Xu, Guizhi [1 ]
Shuai, Zhang [1 ]
Saminu, Sani [1 ]
Javaid, Imran [1 ]
Ahmad, Isah Salim [1 ]
Kamhi, Souha [1 ]
机构
[1] Hebei Univ Technol, State Key Lab Reliabil & Intelligence Elect Equip, Tianjin 300130, Peoples R China
关键词
MRI; brain tumor; detection; classification; seed growing; segmentation; deep wavelet auto-encoder; SEGMENTATION; CRF; PSO;
D O I
10.3390/diagnostics11091589
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The process of diagnosing brain tumors is very complicated for many reasons, including the brain's synaptic structure, size, and shape. Machine learning techniques are employed to help doctors to detect brain tumor and support their decisions. In recent years, deep learning techniques have made a great achievement in medical image analysis. This paper proposed a deep wavelet autoencoder model named "DWAE model", employed to divide input data slice as a tumor (abnormal) or no tumor (normal). This article used a high pass filter to show the heterogeneity of the MRI images and their integration with the input images. A high median filter was utilized to merge slices. We improved the output slices' quality through highlight edges and smoothened input MR brain images. Then, we applied the seed growing method based on 4-connected since the thresholding cluster equal pixels with input MR data. The segmented MR image slices provide two two-layer using the proposed deep wavelet auto-encoder model. We then used 200 hidden units in the first layer and 400 hidden units in the second layer. The softmax layer testing and training are performed for the identification of the MR image normal and abnormal. The contribution of the deep wavelet auto-encoder model is in the analysis of pixel pattern of MR brain image and the ability to detect and classify the tumor with high accuracy, short time, and low loss validation. To train and test the overall performance of the proposed model, we utilized 2500 MR brain images from BRATS2012, BRATS2013, BRATS2014, BRATS2015, 2015 challenge, and ISLES, which consists of normal and abnormal images. The experiments results show that the proposed model achieved an accuracy of 99.3%, loss validation of 0.1, low FPR and FNR values. This result demonstrates that the proposed DWAE model can facilitate the automatic detection of brain tumors.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Efficient Deep Auto-encoder learning for the Classification of Hyperspectral Images
    Mughees, Atif
    Tao, Linmi
    2016 INTERNATIONAL CONFERENCE ON VIRTUAL REALITY AND VISUALIZATION (ICVRV 2016), 2016, : 44 - 51
  • [2] Deep variational auto-encoder for text classification
    Xie, Lin
    Liu, Genggeng
    Lian, Hongfei
    2019 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL CYBER PHYSICAL SYSTEMS (ICPS 2019), 2019, : 737 - 742
  • [3] Change Detection Based on Auto-encoder Model for VHR Images
    Xu, Yuan
    Xiang, Shiming
    Huo, Chunlei
    Pan, Chunhong
    MIPPR 2013: PATTERN RECOGNITION AND COMPUTER VISION, 2013, 8919
  • [4] Deep Belief Network and Auto-Encoder for Face Classification
    Bouchra, Nassih
    Aouatif, Amine
    Mohammed, Ngadi
    Nabil, Hmina
    INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 2019, 5 (05): : 22 - 29
  • [5] Wavelet Loss Function for Auto-Encoder
    Zhu, Qiuyu
    Wang, Hu
    Zhang, Ruixin
    IEEE ACCESS, 2021, 9 : 27101 - 27108
  • [6] Power Quality Disturbances Detection and Classification Based on Deep Convolution Auto-Encoder Networks
    Khetarpal, Poras
    Nagpal, Neelu
    Al-Numay, Mohammed S.
    Siano, Pierluigi
    Arya, Yogendra
    Kassarwani, Neelam
    IEEE ACCESS, 2023, 11 : 46026 - 46038
  • [7] A deep auto-encoder model for gene expression prediction
    Rui Xie
    Jia Wen
    Andrew Quitadamo
    Jianlin Cheng
    Xinghua Shi
    BMC Genomics, 18
  • [8] A deep auto-encoder model for gene expression prediction
    Xie, Rui
    Wen, Jia
    Quitadamo, Andrew
    Cheng, Jianlin
    Shi, Xinghua
    BMC GENOMICS, 2017, 18
  • [9] Anomaly Detection for Medical Images Using Heterogeneous Auto-Encoder
    Lu, Shuai
    Zhang, Weihang
    Zhao, He
    Liu, Hanruo
    Wang, Ningli
    Li, Huiqi
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 2770 - 2782
  • [10] Ensemble Stacked Auto-encoder Classification on LIDAR Remote Sensing Images
    Li, Dawei
    Zhang, Ruifang
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2018, 46 (04) : 597 - 604