Analytical solution of the space-time fractional hyperdiffusion equation

被引:6
|
作者
Tawfik, Ashraf M. [1 ,2 ]
Fichtner, Horst [1 ]
Elhanbaly, A. [2 ]
Schlickeiser, Reinhard [1 ]
机构
[1] Ruhr Univ Bochum, Inst Theoret Phys 4, Univ Str 150, D-44780 Bochum, Germany
[2] Mansoura Univ, Theoret Phys Res Grp, Mansoura 35516, Egypt
关键词
Fractional calculus; Anomalous diffusion; Energetic particles; DIFFUSION-ADVECTION EQUATION; SUPERDIFFUSIVE TRANSPORT; MODELS;
D O I
10.1016/j.physa.2018.07.002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The so-called fractional hyperdiffusion equation is presented to develop a fractional derivative model of the transport of energetic particles. The fractional hyperdiffusion equation is defined in terms of Caputo and Riesz fractional derivatives for time and space, respectively. The solution is obtained by using the Laplace-Fourier transforms and given in terms of the M-Wright and Fox's H functions. Profiles of particle densities are illustrated for different values of space-fractional order. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:178 / 187
页数:10
相关论文
共 50 条
  • [41] Generalized fractional Schrodinger equation with space-time fractional derivatives
    Wang, Shaowei
    Xu, Mingyu
    JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (04)
  • [42] THE NUMERICAL SOLUTION OF THE SPACE-TIME FRACTIONAL DIFFUSION EQUATION INVOLVING THE CAPUTO-KATUGAMPOLA FRACTIONAL DERIVATIVE
    Bouchama, Kaouther
    Arioua, Yacine
    Merzougui, Abdelkrim
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2022, 12 (03): : 621 - 636
  • [43] Numerical solution of the space-time fractional diffusion equation based on fractional reproducing kernel collocation method
    Rui Sun
    Jiabao Yang
    Huanmin Yao
    Calcolo, 2023, 60
  • [44] Numerical solution of the space-time fractional diffusion equation based on fractional reproducing kernel collocation method
    Sun, Rui
    Yang, Jiabao
    Yao, Huanmin
    CALCOLO, 2023, 60 (02)
  • [45] Generalized space-time fractional diffusion equation with composite fractional time derivative
    Tomovski, Zivorad
    Sandev, Trifce
    Metzler, Ralf
    Dubbeldam, Johan
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2012, 391 (08) : 2527 - 2542
  • [46] Space-Time Fractional Schrödinger Equation With Composite Time Fractional Derivative
    Johan L. A. Dubbeldam
    Zivorad Tomovski
    Trifce Sandev
    Fractional Calculus and Applied Analysis, 2015, 18 : 1179 - 1200
  • [47] A STOCHASTIC SOLUTION WITH GAUSSIAN STATIONARY INCREMENTS OF THE SYMMETRIC SPACE-TIME FRACTIONAL DIFFUSION EQUATION
    Pagnini, Gianni
    Paradisi, Paolo
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2016, 19 (02) : 408 - 440
  • [48] A SPACE-TIME SPECTRAL METHOD FOR THE TIME FRACTIONAL DIFFUSION EQUATION
    Li, Xianjuan
    Xu, Chuanju
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (03) : 2108 - 2131
  • [49] Simultaneous inversion for the exponents of the fractional time and space derivatives in the space-time fractional diffusion equation
    Tatar, SalIh
    Tinaztepe, Ramazan
    Ulusoy, Suleyman
    APPLICABLE ANALYSIS, 2016, 95 (01) : 1 - 23
  • [50] On the space-time fractional Schrodinger equation with time independent potentials
    Baqer, Saleh
    Boyadjiev, Lyubomir
    PANORAMA OF MATHEMATICS: PURE AND APPLIED, 2016, 658 : 81 - 90