Analytical solution of the space-time fractional hyperdiffusion equation

被引:6
|
作者
Tawfik, Ashraf M. [1 ,2 ]
Fichtner, Horst [1 ]
Elhanbaly, A. [2 ]
Schlickeiser, Reinhard [1 ]
机构
[1] Ruhr Univ Bochum, Inst Theoret Phys 4, Univ Str 150, D-44780 Bochum, Germany
[2] Mansoura Univ, Theoret Phys Res Grp, Mansoura 35516, Egypt
关键词
Fractional calculus; Anomalous diffusion; Energetic particles; DIFFUSION-ADVECTION EQUATION; SUPERDIFFUSIVE TRANSPORT; MODELS;
D O I
10.1016/j.physa.2018.07.002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The so-called fractional hyperdiffusion equation is presented to develop a fractional derivative model of the transport of energetic particles. The fractional hyperdiffusion equation is defined in terms of Caputo and Riesz fractional derivatives for time and space, respectively. The solution is obtained by using the Laplace-Fourier transforms and given in terms of the M-Wright and Fox's H functions. Profiles of particle densities are illustrated for different values of space-fractional order. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:178 / 187
页数:10
相关论文
共 50 条