Arithmetic properties of polynomials

被引:0
|
作者
Zhang, Yong [1 ]
Shen, Zhongyan [2 ]
机构
[1] Changsha Univ Sci & Technol, Sch Math & Stat, Hunan Prov Key Lab Math Modeling & Anal Engn, Changsha 410114, Peoples R China
[2] Zhejiang Int Studies Univ, Dept Math, Hangzhou 310012, Peoples R China
基金
中国国家自然科学基金;
关键词
Diophantine system; Integer solution; Parametric solution; Pellian equation; Elliptic curve; X F Y; POLYGONAL NUMBERS; PRODUCTS; SYSTEM; SUMS;
D O I
10.1007/s10998-020-00333-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
First, we prove that the Diophantine system f (z) = f (x) + f (y) = f (u) - f (v) = f (p) f (q) has infinitely many integer solutions for f (X) = X(X + a) with nonzero integers a = 0, 1, 4 (mod 5). Second, we show that the above Diophantine system has an integer parametric solution for f (X) = X(X + a) with nonzero integers a, if there are integers m, n, k such that (n2 - m2)(4mnk(k + a + 1) + a(m2 + 2mn - n2)) = 0 (mod (m2 + n2)2), (m2 + 2mn - n2)((m2 - 2mn - n2)k(k + a + 1) - 2amn) = 0 (mod (m2 + n2)2), where k = 0 (mod 4) when a is even, and k = 2 (mod 4) when a is odd. Third, we get that the Diophantine system f (z) = f (x) + f (y) = f (u) - f (v) = f (p) f (q) = f (r) f (s) has a five-parameter rational solution for f (X) = X(X + a) with nonzero rational number a and infinitely many nontrivial rational parametric solutions for f (X) = X(X + a)(X + b) with nonzero integers a, b and a = b. Finally, we raise some related questions.
引用
收藏
页码:134 / 148
页数:15
相关论文
共 50 条
  • [1] Arithmetic properties of polynomials
    Yong Zhang
    Zhongyan Shen
    Periodica Mathematica Hungarica, 2020, 81 : 134 - 148
  • [2] Arithmetic properties of quadratic exponential polynomials
    Shparlinski, Igor E.
    Zannier, Umberto
    NEW YORK JOURNAL OF MATHEMATICS, 2019, 25 : 207 - 218
  • [3] ON THE ARITHMETIC OF ELLIPTIC CURVES RELATED TO THE REDUCIBILITY OF POLYNOMIALS
    Yatsuda, Takahiro
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2008, 11 (02): : 185 - 202
  • [4] Squares in blocks from an arithmetic progression and Galois group of Laguerre polynomials
    Saradha, N.
    Shorey, T. N.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2015, 11 (01) : 233 - 250
  • [5] Arithmetic properties of the sequence of derangements
    Miska, Piotr
    JOURNAL OF NUMBER THEORY, 2016, 163 : 114 - 145
  • [6] Evaluation properties of invariant polynomials
    Dahan, Xavier
    Schost, Eric
    Wu, Jie
    JOURNAL OF SYMBOLIC COMPUTATION, 2009, 44 (11) : 1592 - 1604
  • [7] Some properties of Chebyshev polynomials
    Kim, Seon-Hong
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012,
  • [8] Some properties of Chebyshev polynomials
    Seon-Hong Kim
    Journal of Inequalities and Applications, 2012
  • [9] Certain characterization properties of the Laguerre polynomials
    Prajapat, Jugal Kishore
    Dash, Prachi Prajna
    Sheshma, Anisha
    Raina, Ravinder Krishna
    JOURNAL OF ANALYSIS, 2024, 32 (06) : 3139 - 3154
  • [10] Arithmetic properties of Delannoy numbers and Schroder numbers
    Sun, Zhi-Wei
    JOURNAL OF NUMBER THEORY, 2018, 183 : 146 - 171