A NOVEL TOOL FOR UNSUPERVISED FLOOD MAPPING USING SENTINEL-1 IMAGES

被引:0
作者
Amitrano, D. [1 ]
Di Martino, G. [1 ]
Iodice, A. [1 ]
Riccio, D. [1 ]
Ruello, G. [1 ]
机构
[1] Univ Napoli Federico II, Dept Elect Engn & Informat Technol, Via Claudio 21, I-80125 Naples, Italy
来源
IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2018年
关键词
Synthetic aperture radar; sentinel-1; flooding; classification; fuzzy systems;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we present a novel method for mapping flooded areas exploiting Sentinel-1 ground range detected products. The work introduces two novelties. As first, the input products. In fact, as far we know, no applications using these products has been so far presented in literature. Secondly, a new unsupervised methodology, based on the usage of opportune layers combined in a fuzzy decision system, is presented. Experimental results, obtained both on the single SAR image and on a couple of acquisitions in a change detection framework showed that our method is able to outperform the most popular classification techniques in terms of standard assessment parameters.
引用
收藏
页码:4909 / 4912
页数:4
相关论文
共 50 条
  • [41] A novel change detection and threshold-based ensemble of scenarios pyramid for flood extent mapping using Sentinel-1 data
    Pedzisai, Ezra
    Mutanga, Onisimo
    Odindi, John
    Bangira, Tsitsi
    [J]. HELIYON, 2023, 9 (03)
  • [42] Flood susceptibility mapping using a novel integration of multi-temporal sentinel-1 data and eXtreme deep learning model
    Al-Ruzouq, Rami
    Shanableh, Abdallah
    Jena, Ratiranjan
    Gibril, Mohammed Barakat A.
    Hammouri, Nezar Atalla
    Lamghari, Fouad
    [J]. GEOSCIENCE FRONTIERS, 2024, 15 (03)
  • [43] Machine Learning-Based Summer Crops Mapping Using Sentinel-1 and Sentinel-2 Images
    Maleki, Saeideh
    Baghdadi, Nicolas
    Bazzi, Hassan
    Dantas, Cassio Fraga
    Ienco, Dino
    Nasrallah, Yasser
    Najem, Sami
    [J]. REMOTE SENSING, 2024, 16 (23)
  • [44] Development of a method for flood detection based on Sentinel-1 images and classifier algorithms
    Sharifi, Alireza
    [J]. WATER AND ENVIRONMENT JOURNAL, 2021, 35 (03) : 924 - 929
  • [45] Irrigation Mapping Using Sentinel-1 Time Series at Field Scale
    Gao, Qi
    Zribi, Mehrez
    Jose Escorihuela, Maria
    Baghdadi, Nicolas
    Segui, Pere Quintana
    [J]. REMOTE SENSING, 2018, 10 (09)
  • [46] Interseasonal transfer learning for crop mapping using Sentinel-1 data
    Pandzic, Milos
    Pavlovic, Dejan
    Matavulj, Predrag
    Brdar, Sanja
    Marko, Oskar
    Crnojevic, Vladimir
    Kilibarda, Milan
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2024, 128
  • [47] SHIP CLASSIFICATION USING LAYOVER IN SENTINEL-1 IMAGES
    Al Hinai, Al Adil
    Guida, Raffaella
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 7495 - 7498
  • [48] IRRIGATION MAPPING USING SENTINEL-1 TIME SERIES
    Bazzi, Hassan
    Baghdadi, Nicolas
    Ienco, Dino
    Zribi, Mehrez
    Belhouchette, Hatem
    [J]. IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 4711 - 4714
  • [49] Flood inundation mapping and monitoring in Kaziranga National Park, Assam using Sentinel-1 SAR data
    Suranjana B. Borah
    Thota Sivasankar
    M. N. S. Ramya
    P. L. N. Raju
    [J]. Environmental Monitoring and Assessment, 2018, 190
  • [50] Development of an automatic time-series flood mapping framework using Sentinel-1 and 2 imagery
    Farhadi, Hadi
    Kiani, Abbas
    Ebadi, Hamid
    Asgary, Ali
    [J]. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2025,