EDPANs: Enhanced Dual Path Attention Networks for Single Image Super-Resolution

被引:1
作者
Cheng, Guoan [1 ]
Matsune, Ai [1 ]
Zang, Huaijuan [1 ]
Kurihara, Toru [2 ]
Zhan, Shu [1 ]
机构
[1] Hefei Univ Technol, Sch Comp & Informat, Hefei 230601, Peoples R China
[2] Kochi Univ Technol, Sch Informat, Kami, Kochi 7828502, Japan
关键词
Image super-resolution; deep-learning; self-attention; dual path network; SYSTEMS;
D O I
10.1142/S021812662150300X
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose an enhanced dual path attention network (EDPAN) for image superresolution. ResNet is good at implicitly reusing extracted features, DenseNet is good at exploring new features. Dual Path Network (DPN) combines ResNets and DenseNet to create a more accurate architecture than the straightforward one. We experimentally show that the residual network performs best when each block consists of two convolutions, and the dense network performs best when each micro-block consists of one convolution. Following these ideas, our EDPAN exploits the advantages of the residual structure and the dense structure. Besides, to deploy the computations for features more effectively, we introduce the attention mechanism into our EDPAN. Moreover, to relieve the parameters burden, we also utilize recursive learning to propose a lightweight model. In the experiments, we demonstrate the effectiveness and robustness of our proposed EDPAN on different degradation situations. The quantitative results and visualization comparison can sufficiently indicate that our EDPAN achieves favorable performance over the state-of-the-art frameworks.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Single Image Super-Resolution Using Deep Hierarchical Attention Network
    Zhao, Fei
    Chen, Rui
    Li, Yuan
    PROCEEDINGS OF 2020 5TH INTERNATIONAL CONFERENCE ON MULTIMEDIA AND IMAGE PROCESSING (ICMIP 2020), 2020, : 80 - 85
  • [42] Clustering based multiple branches deep networks for single image super-resolution
    Li, Zhen
    Li, Qilei
    Wu, Wei
    Wu, Zongjun
    Lu, Lu
    Yang, Xiaomin
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (13-14) : 9019 - 9035
  • [43] Clustering based multiple branches deep networks for single image super-resolution
    Zhen Li
    Qilei Li
    Wei Wu
    Zongjun Wu
    Lu Lu
    Xiaomin Yang
    Multimedia Tools and Applications, 2020, 79 : 9019 - 9035
  • [44] Pyramid Separable Channel Attention Network for Single Image Super-Resolution
    Ma, Congcong
    Mi, Jiaqi
    Gao, Wanlin
    Tao, Sha
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 80 (03): : 4687 - 4701
  • [45] Image Super-Resolution Reconstruction Based on Dual-Branch Channel Attention
    Shi, Jinyu
    Si, Zhanjun
    Zhang, Yingxue
    Yang, Xinbin
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT VII, ICIC 2024, 2024, 14868 : 291 - 299
  • [46] Modified Dual Path Network With Transform Domain Data for Image Super-Resolution
    Chen, De-Wei
    Kuo, Chih-Hung
    IEEE ACCESS, 2020, 8 : 97975 - 97985
  • [47] Lightweight single image super-resolution based on multi-path progressive feature fusion and attention mechanism
    Shanshan Li
    Dengwen Zhou
    Yukai Liu
    Dandan Gao
    Wanjun Wang
    International Journal of Machine Learning and Cybernetics, 2023, 14 : 3517 - 3528
  • [48] Lightweight single image super-resolution based on multi-path progressive feature fusion and attention mechanism
    Li, Shanshan
    Zhou, Dengwen
    Liu, Yukai
    Gao, Dandan
    Wang, Wanjun
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (10) : 3517 - 3528
  • [49] Information-Growth Attention Network for Image Super-Resolution
    Li, Zhuangzi
    Li, Ge
    Li, Thomas
    Liu, Shan
    Gao, Wei
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 544 - 552
  • [50] Image super-resolution using dilated neighborhood attention transformer
    Chen, Li
    Zuo, Jinnian
    Du, Kai
    Zou, Jinsong
    Yin, Shaoyun
    Wang, Jinyu
    JOURNAL OF ELECTRONIC IMAGING, 2024, 33 (02)