A high order numerical method for solving Caputo nonlinear fractional ordinary differential equations

被引:3
作者
Zhang, Xumei [1 ]
Cao, Junying [1 ]
机构
[1] Guizhou Minzu Univ, Sch Data Sci & Informat Engn, Guiyang 550025, Peoples R China
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 12期
基金
中国国家自然科学基金;
关键词
nonlinear fractional ordinary differential equations; Caputo derivative; finite difference method; higher order numerical scheme; convergence analysis; COLLOCATION METHOD; SCHEME;
D O I
10.3934/math.2021762
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we construct a high order numerical scheme for Caputo nonlinear fractional ordinary differential equations. Firstly, we use the piecewise Quadratic Lagrange interpolation method to construct a high order numerical scheme for Caputo nonlinear fractional ordinary differential equations, and then analyze the local truncation error of the high order numerical scheme. Secondly, based on the local truncation error, the convergence order of 3 - theta order is obtained. And the convergence are strictly analyzed. Finally, the numerical simulation of the high order numerical scheme is carried out. Through the calculation of typical problems, the effectiveness of the numerical algorithm and the correctness of theoretical analysis are verified.
引用
收藏
页码:13187 / 13209
页数:23
相关论文
共 22 条
  • [1] Alessandra J., AIMS MATH, V6, P9109
  • [2] Space-time finite element method for the distributed-order time fractional reaction diffusion equations
    Bu, Weiping
    Ji, Lun
    Tang, Yifa
    Zhou, Jie
    [J]. APPLIED NUMERICAL MATHEMATICS, 2020, 152 : 446 - 465
  • [3] A high order finite difference/spectral approximations to the time fractional diffusion equations
    Cao, Junying
    Xu, Chuanju
    Wang, Ziqiang
    [J]. MATERIALS RESEARCH AND APPLICATIONS, PTS 1-3, 2014, 875-877 : 781 - +
  • [4] A high order schema for the numerical solution of the fractional ordinary differential equations
    Cao, Junying
    Xu, Chuanju
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 238 : 154 - 168
  • [5] Application of the collocation method for solving nonlinear fractional integro-differential equations
    Eslahchi, M. R.
    Dehghan, Mehdi
    Parvizi, M.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 257 : 105 - 128
  • [6] A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications
    Gao, Guang-hua
    Sun, Zhi-zhong
    Zhang, Hong-wei
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 259 : 33 - 50
  • [7] Localized Method of Fundamental Solutions for Three-Dimensional Elasticity Problems: Theory
    Gu, Yan
    Fan, Chia-Ming
    Fu, Zhuojia
    [J]. ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2021, 13 (06) : 1520 - 1534
  • [8] Spectral collocation method for nonlinear Riemann-Liouville fractional differential equations
    Gu, Zhendong
    [J]. APPLIED NUMERICAL MATHEMATICS, 2020, 157 : 654 - 669
  • [9] An hp-version Chebyshev collocation method for nonlinear fractional differential equations
    Guo, Yuling
    Wang, Zhongqing
    [J]. APPLIED NUMERICAL MATHEMATICS, 2020, 158 : 194 - 211
  • [10] Khadijeh N., NUMER ALGORITHMS, V88, P113