Modeling of Stress Evolution of Electroplated Cu Films during Self-annealing

被引:3
|
作者
Huang, Rui [1 ]
Robl, Werner [2 ]
Detzel, Thomas [3 ]
Ceric, Hajdin [4 ]
机构
[1] Kompetenzzentrum Automobil & Ind KAI GmbH, Europastr 8, A-9524 Villach, Austria
[2] Infineon Technol AG, D-93049 Regensburg, Germany
[3] Infineon Technol Austria AG, A-9500 Villach, Austria
[4] Vienna Univ Technol, Inst Microelect, A-1040 Vienna, Austria
来源
2010 INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM | 2010年
关键词
modeling; stress; Cu films; self-annealing; ABNORMAL GRAIN-GROWTH; ROOM-TEMPERATURE; THIN-FILMS; COPPER-FILMS; MICROSTRUCTURAL EVOLUTION; RECRYSTALLIZATION; MECHANISMS; KINETICS; RESISTIVITY; THICKNESS;
D O I
10.1109/IRPS.2010.5488706
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Electroplated Cu films are known to change their microstructure at room temperature due to the self-annealing effect. This recrystallization process results in a film-thickness-dependent stress evolution. Films with the thickness of 5 mu m and below decrease in stress with time, while thicker films reveal initially an increase in film stress followed by a stress relaxation at a later stage. This behavior is explained by the superposition of grain growth and grain size dependent yielding. Existing models have been used and improved to describe the mechanisms related to stress evolution. In general, the models proposed in this study provide a satisfactory description of the stress evolution of electroplated Cu films and the simulated results show good agreement with the experimental data. This gives the possibility to evaluate and predict mechanical behavior of electroplated Cu films at room temperature.
引用
收藏
页码:911 / 917
页数:7
相关论文
共 50 条
  • [41] The effect of stress distribution on texture evolution of Cu damascene interconnects during annealing
    Cho, JY
    Lee, HJ
    Kim, H
    Szpunar, JA
    ARCHIVES OF METALLURGY AND MATERIALS, 2005, 50 (01) : 261 - 266
  • [42] Unraveling the self-annealing behavior of cryo-rolled Cu-Fe-P alloy sheets: Evidence and implications
    Gupta, Aman
    Park, Ki-Seong
    Yoo, Tae-Hyeon
    Singh, Abhishek Kumar
    Lee, Dongwon
    Heo, Yoon-Uk
    Choi, Shi-Hoon
    INTERNATIONAL JOURNAL OF PLASTICITY, 2023, 167
  • [43] Structural evolution in annealing of layered C-Cu composite films
    Onoprienko, A. A.
    Danilenko, N. I.
    POWDER METALLURGY AND METAL CERAMICS, 2009, 48 (1-2) : 93 - 99
  • [44] Influence of crystallite size and impurity density on the grain structure evolution of electroplated copper films during thermal and laser annealing
    Han, Silin
    Li, Chongyang
    Chen, Yuhang
    Wu, Yunwen
    Li, Ming
    Hang, Tao
    THIN SOLID FILMS, 2024, 805
  • [45] Microstructural evolution and phase transformation kinetics of pulse-electroplated Ni-Cu-P alloy film during annealing
    Hu, Yang
    Yang, Lei
    Shi, Changdong
    Tang, Wenming
    MATERIALS CHEMISTRY AND PHYSICS, 2013, 141 (2-3) : 944 - 950
  • [46] Stress evolution of Au/Cu/Au tri-layer systems during annealing
    Chocyk, Dariusz
    Proszynski, Adam
    APPLIED SURFACE SCIENCE, 2012, 260 : 65 - 68
  • [47] Barrier layer and annealing temperature dependent microstructure evolution of nanocrystalline Cu films
    Cao, Z. H.
    Lu, H. M.
    Meng, X. K.
    MATERIALS CHEMISTRY AND PHYSICS, 2009, 117 (01) : 321 - 325
  • [48] Evolution of microstructure, residual stress, and texture in FePt films during rapid thermal annealing
    Hsiao, S. N.
    Chen, L. H.
    Liu, S. H.
    Tsai, J. L.
    Lee, H. Y.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 656 : 876 - 880
  • [49] Local slope evolution during thermal annealing of polycrystalline Au films
    Alonzo-Medina, G. M.
    Gonzalez-Gonzalez, A.
    Sacedon, J. L.
    Oliva, A. I.
    Vasco, E.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2012, 45 (43)
  • [50] Influence of thermal annealing on the microstructure evolution, fracture and fatigue behavior of nanocrystalline Cu films
    Xia, Yun
    Zuo, Jiadong
    Yang, Chao
    Wu, Kai
    Liu, Gang
    Sun, Jun
    MATERIALS TODAY COMMUNICATIONS, 2023, 36