In-situ Deposition of Graphene Oxide Catalyst for Efficient Photoelectrochemical Hydrogen Evolution Reaction Using Atmospheric Plasma

被引:32
|
作者
Alam, Khurshed [1 ]
Sim, Yelyn [1 ]
Yu, Ji-Hun [2 ]
Gnanaprakasam, Janani [1 ]
Choi, Hyeonuk [1 ]
Chae, Yujin [1 ]
Sim, Uk [1 ]
Cho, Hoonsung [1 ]
机构
[1] Chonnam Natl Univ, Dept Mat Sci & Engn, Gwangju 61186, South Korea
[2] Korea Inst Mat Sci, Ctr 3D Printing Mat Res, Chang Won 41508, South Korea
基金
新加坡国家研究基金会;
关键词
photoelectrochemical cell; graphene oxide; hydrogen; atmospheric plasma; hydrophobicity; hydrophilicity; RAMAN-SPECTRUM; REDUCTION; GROWTH;
D O I
10.3390/ma13010012
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The vacuum deposition method requires high energy and temperature. Hydrophobic reduced graphene oxide (rGO) can be obtained by plasma-enhanced chemical vapor deposition under atmospheric pressure, which shows the hydrophobic surface property. Further, to compare the effect of hydrophobic and the hydrophilic nature of catalysts in the photoelectrochemical cell (PEC), the prepared rGO was additionally treated with plasma that attaches oxygen functional groups effectively to obtain hydrophilic graphene oxide (GO). The hydrogen evolution reaction (HER) electrocatalytic activity of the hydrophobic rGO and hydrophilic GO deposited on the p-type Si wafer was analyzed. Herein, we have proposed a facile way to directly deposit the surface property engineered GO.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Atmospheric Dry Hydrogen Plasma Reduction of Inkjet-Printed Flexible Graphene Oxide Electrodes
    Homola, Tomas
    Pospisil, Jan
    Krumpolec, Richard
    Soucek, Pavel
    Dzik, Petr
    Weiter, Martin
    Cernak, Mirko
    CHEMSUSCHEM, 2018, 11 (05) : 941 - 947
  • [22] Controlling the electrochemical hydrogen generation and storage in graphene oxide by in-situ Raman spectroscopy
    Pinilla-Sanchez, Adrian
    Chavez-Angel, Emigdio
    Murcia-Lopez, Sebastian
    Carretero, Nina M.
    Palardonio, Sidney M.
    Xiao, Peng
    Rueda-Garcia, Daniel
    Torres, Clivia M. Sotomayor
    Gomez-Romero, Pedro
    Martorell, Jordi
    Ros, Carles
    CARBON, 2022, 200 : 227 - 235
  • [23] In Situ Generated Amorphous Molybdenum Sulfide on Reduced Graphene Oxide Nanocomposite Catalyst for Hydrogen Evolution in a Biphasic Liquid System
    Aslan, Emre
    Yanalak, Gizem
    Patir, Imren Hatay
    CHEMCATCHEM, 2021, 13 (24) : 5203 - 5209
  • [24] In-situ investigation of graphene oxide under UV irradiation: Evolution of work function
    Li, Jun
    Qi, Xiang
    Hao, Guolin
    Ren, Long
    Zhong, Jianxin
    AIP ADVANCES, 2015, 5 (06)
  • [25] A dinuclear porphyrin-macrocycle as efficient catalyst for the hydrogen evolution reaction
    Joekel, Julia
    Schwer, Fabian
    von Delius, Max
    Apfel, Ulf-Peter
    CHEMICAL COMMUNICATIONS, 2020, 56 (91) : 14179 - 14182
  • [26] In-situ reduced graphene oxide/geopolymer composites for efficient Cs+ immobilization
    Shao, Sihang
    Ma, Siqi
    He, Peigang
    Jia, Dechang
    Yang, Hualong
    Duan, Xiaoming
    Zhou, Yu
    OPEN CERAMICS, 2021, 6
  • [27] Collector Optic In-Situ Sn Removal Using Hydrogen Plasma
    Sporre, John R.
    Elg, Dan
    Ruzic, David N.
    Srivastava, Shailendra N.
    Fomenkov, Igor V.
    Brandt, David C.
    EXTREME ULTRAVIOLET (EUV) LITHOGRAPHY IV, 2013, 8679
  • [28] Graphene/TiO2 hydrogel: a potential catalyst to hydrogen evolution reaction
    Christian Castillo, Virgil
    Dalagan, Juliet Q.
    BULLETIN OF MATERIALS SCIENCE, 2016, 39 (06) : 1461 - 1466
  • [29] Radiation Induced Synthesis of Amorphous Molybdenum Sulfide/Reduced Graphene Oxide Nanocomposites for Efficient Hydrogen Evolution Reaction
    Cao Pengfei
    Hu Yang
    Zhang Youwei
    Peng Jing
    Zhai Maolin
    ACTA PHYSICO-CHIMICA SINICA, 2017, 33 (12) : 2542 - 2549
  • [30] In situ construction of graphdiyne/CuS heterostructures for efficient hydrogen evolution reaction
    Shi, Guodong
    Fan, Zixiong
    Du, Lili
    Fu, Xinliang
    Dong, Changming
    Xie, Wei
    Zhao, Dongbing
    Wang, Mei
    Yuan, Mingjian
    MATERIALS CHEMISTRY FRONTIERS, 2019, 3 (05) : 821 - 828