Feedback and invariance under uncertainty via set-iterates

被引:74
作者
Artstein, Zvi [2 ]
Rakovic, Sasa V. [1 ]
机构
[1] ETH Zentrum, Swiss Fed Inst Technol, Automat Control Lab, ETLI 242, CH-8092 Zurich, Switzerland
[2] Weizmann Inst Sci, Dept Math, IL-76100 Rehovot, Israel
关键词
invariance; feedback control; set dynamics; minimal invariant sets; DYNAMIC-SYSTEMS; APPROXIMATIONS;
D O I
10.1016/j.automatica.2007.06.013
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We examine discrete-time control systems under non-parametric disturbances. Sets which a given control feedback makes invariant under the disturbance are analyzed via lifting the feedback operation to the space of sets. Properties of being an attractor of the disturbed dynamics and being a minimal invariant set are derived from the corresponding notions of the set-dynamics, yielding, in turn, useful characterizations and error estimates for numerical algorithms which detect the minimal invariant sets. Concrete numerics for some examples of practical feedback rules are offered. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:520 / 525
页数:6
相关论文
共 14 条
[1]  
Aliprantis CharalambosD., 1981, PRINCIPLES REAL ANAL
[2]  
Aubin J.-P., 1991, Viability Theory
[3]  
Bank B., 1983, Nonlinear Parametric Optimization
[4]   Set invariance in control [J].
Blanchini, F .
AUTOMATICA, 1999, 35 (11) :1747-1767
[5]   (A, B)-invariant polyhedral sets of linear discrete-time systems [J].
Dórea, CET ;
Hennet, JC .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1999, 103 (03) :521-542
[6]   CONTROL OF LINEAR DYNAMIC SYSTEMS WITH SET CONSTRAINED DISTURBANCES [J].
GLOVER, JD ;
SCHWEPPE, FC .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1971, AC16 (05) :411-&
[7]  
Klein E, 1984, CANADIAN MATH SOC SE
[8]   Theory and computation of disturbance invariant sets for discrete-time linear systems [J].
Kolmanovsky, I ;
Gilbert, EG .
MATHEMATICAL PROBLEMS IN ENGINEERING, 1998, 4 (04) :317-367
[9]  
Kouramas KI, 2005, IEEE DECIS CONTR P, P2296
[10]   Minimal invariant sets of dynamic systems with bounded disturbances [J].
Kuntsevich, VM ;
Pshenichnyi, BN .
CYBERNETICS AND SYSTEMS ANALYSIS, 1996, 32 (01) :58-64