ScrewBender: Smoothing piecewise helical motions

被引:6
作者
Powell, Alexander [1 ]
Rossignac, Jarek [1 ]
机构
[1] Georgia Inst Technol, Atlanta, GA 30332 USA
关键词
D O I
10.1109/MCG.2008.14
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Although a piecewise helical (polyscrew) motion is continuous, velocities are typically discontinuous at control poses when the motion switches between screws. We obtain a smooth motion through polyscrew 4-point, B-spline, or Jarek subdivision, which are trivial to implement and can be animated in real time.
引用
收藏
页码:56 / 63
页数:8
相关论文
共 12 条
  • [1] Alexa M, 2002, ACM T GRAPHIC, V21, P380, DOI 10.1145/566570.566592
  • [2] ANALYSIS OF UNIFORM BINARY SUBDIVISION SCHEMES FOR CURVE DESIGN
    DYN, N
    GREGORY, JA
    LEVIN, D
    [J]. CONSTRUCTIVE APPROXIMATION, 1991, 7 (02) : 127 - 147
  • [3] HOFER M, 2002, ADV ROBOT KINEMATICS, P235
  • [4] SOLID-INTERPOLATING DEFORMATIONS - CONSTRUCTION AND ANIMATION OF PIPS
    KAUL, A
    ROSSIGNAC, J
    [J]. COMPUTERS & GRAPHICS, 1992, 16 (01) : 107 - 115
  • [5] Smooth invariant interpolation of rotations
    Park, FC
    Ravani, B
    [J]. ACM TRANSACTIONS ON GRAPHICS, 1997, 16 (03): : 277 - 295
  • [6] POWELL A, 2007, GITGVU0505
  • [7] Education-driven research in CAD
    Rossignac, J
    [J]. COMPUTER-AIDED DESIGN, 2004, 36 (14) : 1461 - 1469
  • [8] Computing and visualizing pose-interpolating 3D motions
    Rossignac, JR
    Kim, JJ
    [J]. COMPUTER-AIDED DESIGN, 2001, 33 (04) : 279 - 291
  • [9] Sabin M., 2002, HDB COMPUTER AIDED G, V12, P309, DOI [10.1016/B978-044451104-1/50013-7, DOI 10.1016/B978-044451104-1/50013-7]
  • [10] Convergence and C1 analysis of subdivision schemes on manifolds by proximity
    Wallner, J
    Dyn, N
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 2005, 22 (07) : 593 - 622