Sensitivity analysis for 3D Maxwell's equations and its use in the resolution of an inverse medium problem at fixed frequency

被引:8
作者
Darbas, Marion [1 ]
Heleine, Jeremy [1 ]
Lohrengel, Stephanie [2 ]
机构
[1] Univ Picardie Jules Verne, LAMFA CNRS UMR 7352, 33 Rue St Leu, F-80039 Amiens 1, France
[2] Univ Reims, LMR CNRS FRE2011, Reims, France
关键词
Inverse medium problem; 3D Maxwell equations; small-amplitude inhomogeneities; Gateaux derivative; integral equation; edge finite elements; computer science; MULTIPLE-SCATTERING PROBLEMS; TOPOLOGICAL SENSITIVITY; RECONSTRUCTION; IDENTIFICATION; PERTURBATIONS; CONDUCTIVITY; RESPECT;
D O I
10.1080/17415977.2019.1588896
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper deals with the reconstruction of small-amplitude perturbations in the electric properties (permittivity and conductivity) of a medium from boundary measurements of the electric field at a fixed frequency. The underlying model is the three-dimensional time-harmonic Maxwell equations in the electric field. Sensitivity analysis with respect to the parameters is performed, and explicit relations between the boundary measurements and the characteristics of the perturbations are found from an appropriate integral equation and extensive numerical simulations in 3D. The resulting non-iterative algorithm allows to retrieve efficiently the centre and volume of the perturbations in various situations from the simple sphere to a realistic model of the human head.
引用
收藏
页码:459 / 496
页数:38
相关论文
共 52 条
[1]   Penetration of electromagnetic fields of an open-ended coaxial probe between 1 MHz and 1 GHz in dielectric skin measurements [J].
Alanen, E ;
Lahtinen, T ;
Nuutinen, J .
PHYSICS IN MEDICINE AND BIOLOGY, 1999, 44 (07) :N169-N176
[2]   The Linearized Inverse Problem in Multifrequency Electrical Impedance Tomography [J].
Alberti, Giovanni S. ;
Ammari, Habib ;
Jin, Bangti ;
Seo, Jin-Keun ;
Zhang, Wenlong .
SIAM JOURNAL ON IMAGING SCIENCES, 2016, 9 (04) :1525-1551
[3]   The leading-order term in the asymptotic expansion of the scattering amplitude of a collection of finite number of dielectric inhomogeneities of small diameter [J].
Ammari, H ;
Volkov, D .
INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING, 2005, 3 (03) :285-295
[4]   Identification of small amplitude perturbations in the electromagnetic parameters from partial dynamic boundary measurements [J].
Ammari, H .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 282 (02) :479-494
[5]   Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter II. The full Maxwell equations [J].
Ammari, H ;
Vogelius, MS ;
Volkov, D .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2001, 80 (08) :769-814
[6]  
Ammari H, 2017, MULTIWAVE MED IMAGIN, V2
[7]  
Ammari H, EUR J APPL MATH
[8]  
Ammari H., 2004, LECT NOTES MATH, V1846, DOI [10.1007/b98245, DOI 10.1007/B98245]
[9]   Target Identification Using Dictionary Matching of Generalized Polarization Tensors [J].
Ammari, Habib ;
Boulier, Thomas ;
Garnier, Josselin ;
Jing, Wenjia ;
Kang, Hyeonbae ;
Wang, Han .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2014, 14 (01) :27-62
[10]   THE GENERALIZED POLARIZATION TENSORS FOR RESOLVED IMAGING PART II: SHAPE AND ELECTROMAGNETIC PARAMETERS RECONSTRUCTION OF AN ELECTROMAGNETIC INCLUSION FROM MULTISTATIC MEASUREMENTS [J].
Ammari, Habib ;
Kang, Hyeonbae ;
Kim, Eunjoo ;
Lee, June-Yub .
MATHEMATICS OF COMPUTATION, 2012, 81 (278) :839-860