Recursive prosody is not finite-state

被引:0
作者
Dolatian, Hossep [1 ]
De Santo, Aniello [2 ]
Graf, Thomas [1 ]
机构
[1] SUNY Stony Brook, Dept Linguist, Stony Brook, NY 11794 USA
[2] Univ Utah, Dept Linguist, Salt Lake City, UT USA
来源
SIGMORPHON 2021: 18TH SIGMORPHON WORKSHOP ON COMPUTATIONAL RESEARCH IN PHONETICS, PHONOLOGY, AND MORPHOLOGY | 2021年
基金
美国国家科学基金会;
关键词
TREE-TRANSDUCERS; GRAMMAR;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper investigates bounds on the generative capacity of prosodic processes, by focusing on the complexity of recursive prosody in coordination contexts in English (Wagner, 2010). Although all phonological processes and most prosodic processes are computationally regular string languages, we show that recursive prosody is not. The output string language is instead parallel multiple context-free (Seki et al., 1991). We evaluate the complexity of the pattern over strings, and then move on to a characterization over trees that requires the expressivity of multi bottom-up tree transducers. In doing so, we provide a foundation for future mathematically grounded investigations of the syntax-prosody interface.
引用
收藏
页码:11 / 22
页数:12
相关论文
共 89 条
[1]  
[Anonymous], 1987, FESTSCHRIFT ILSE LEH
[2]  
[Anonymous], 2017, INT C FORM GRAMM 201
[3]  
[Anonymous], 1980, THESIS MASSACHUSETTS
[4]  
[Anonymous], 2005, THESIS MASSACHUSETTS
[5]  
[Anonymous], 2011, P 49 ANN M ASS COMP
[6]   The Syntax-Prosody Interface [J].
Bennett, Ryan ;
Elfner, Emily .
ANNUAL REVIEW OF LINGUISTICS, VOL 5, 2019, 5 :151-171
[7]  
Bojanczyk Mikolaj., 2018, ARXIV PREPRINT ARXIV
[8]  
Bojanczyk Mikolaj, 2019, LIPICS, V132
[9]  
Boston M F., 2009, The Mathematics of Language, 10th and 11th Biennial Conference, MOL 10, Los Angeles, CA, USA, July 28-30, 2007, and MOL 11, Bielefeld, Germany, August 20-21, 2009, Revised Selected Papers, V6149, P1
[10]  
Chew P.A., 2003, A computational phonology of russian