On the Generalized Network Sharing bound and edge-cut bounds for network coding

被引:0
作者
Kamath, Sudeep [1 ]
Tse, David N. C. [1 ]
机构
[1] Univ Calif Berkeley, Dept EECS, Berkeley, CA 94720 USA
来源
2013 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT) | 2013年
关键词
INFORMATION-FLOW;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider sum-rate edge-cut bounds on network coding rates for the multiple unicast problem. We first show that the Generalized Network Sharing (GNS) bound is equivalent to a functional dependence bound in the literature. After defining a notion of profile of an edge-cut, we show that the only profiles for which, every edge-cut with the said profile leads to a fundamental bound on network coding rates, are the so-called GNS profiles and further, we quantify with a tight constant factor, the amount by which network coding can potentially beat edge-cuts associated with other profiles. Finally, we show that the problem of computing the GNS bound is NP-complete, even for two-unicast networks.
引用
收藏
页码:2735 / 2739
页数:5
相关论文
共 16 条
  • [1] Network information flow
    Ahlswede, R
    Cai, N
    Li, SYR
    Yeung, RW
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (04) : 1204 - 1216
  • [2] [Anonymous], 2006, Elements of Information Theory
  • [3] Arbabjolfaei F., 2013, ARXIV13021601CSIT
  • [4] Chan T., 2008, P IEEE ISIT TOR CAN
  • [5] THE COMPLEXITY OF MULTITERMINAL CUTS
    DAHLHAUS, E
    JOHNSON, DS
    PAPADIMITRIOOU, CH
    SEYMOUR, PD
    YANNAKAKIS, M
    [J]. SIAM JOURNAL ON COMPUTING, 1994, 23 (04) : 864 - 894
  • [6] Insufficiency of linear coding in network information flow
    Dougherty, R
    Freiling, C
    Zeger, K
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (08) : 2745 - 2759
  • [7] El Gamal A., 1981, IEEE NAT TEL C NEW O, V2, pD411
  • [8] On the capacity of information networks
    Harvey, Nicholas J. A.
    Kleinberg, Robert
    Lehman, April Rasala
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (06) : 2345 - 2364
  • [9] Kamath S., 2011, P INT S NETW COD BEI
  • [10] KOETTER R, 2003, IEEE ACM T NETWORKIN, V11