Synchronization of fractional-order complex dynamical networks via periodically intermittent pinning control

被引:59
作者
Li, Hong-Li [1 ]
Hu, Cheng [1 ]
Jiang, Haijun [1 ]
Teng, Zhidong [1 ]
Jiang, Yao-Lin [1 ,2 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
[2] Xi An Jiao Tong Univ, Dept Math, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional-order; Complex networks; Synchronization; Pinning control; Intermittent control; CLUSTER SYNCHRONIZATION; EXPONENTIAL SYNCHRONIZATION; DIFFERENTIAL-EQUATIONS; STABILITY; DELAYS;
D O I
10.1016/j.chaos.2017.06.025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper investigates the synchronization problem of general complex networks with fractional-order dynamical nodes. Pinning state feedback controllers have been proved to be effective for synchronization control of fractional-order complex networks. We will show that pinning intermittent controllers are also effective for synchronization control of general fractional-order complex networks. Based on the Lyapunov method and periodically intermittent control method, several low-dimensional criteria are derived for the synchronization of such dynamical networks. Finally, a numerical example is presented to demonstrate the validity and feasibility of the theoretical results. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:357 / 363
页数:7
相关论文
共 40 条
[1]   Lyapunov functions for fractional order systems [J].
Aguila-Camacho, Norelys ;
Duarte-Mermoud, Manuel A. ;
Gallegos, Javier A. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (09) :2951-2957
[2]  
[Anonymous], 2006, THEORY APPL FRACTION
[3]  
[Anonymous], 2000, Applications of Fractional Calculus in Physics
[4]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[5]   Synchronization of Fractional-Order Delayed Neural Networks with Hybrid Coupling [J].
Bao, Haibo ;
Park, Ju H. ;
Cao, Jinde .
COMPLEXITY, 2016, 21 (S1) :106-112
[6]   Evolution of the social network of scientific collaborations [J].
Barabási, AL ;
Jeong, H ;
Néda, Z ;
Ravasz, E ;
Schubert, A ;
Vicsek, T .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 311 (3-4) :590-614
[7]   Exponential synchronization of complex delayed dynamical networks via pinning periodically intermittent control [J].
Cai, Shuiming ;
Hao, Junjun ;
He, Qinbin ;
Liu, Zengrong .
PHYSICS LETTERS A, 2011, 375 (19) :1965-1971
[8]   Global Mittag-Leffler stability and synchronization of memristor-based fractional-order neural networks [J].
Chen, Jiejie ;
Zeng, Zhigang ;
Jiang, Ping .
NEURAL NETWORKS, 2014, 51 :1-8
[9]   Pinning synchronization of fractional-order delayed complex networks with non-delayed and delayed couplings [J].
Chen, Liping ;
Wu, Ranchao ;
Chu, Zhaobi ;
He, Yigang ;
Yin, Lisheng .
INTERNATIONAL JOURNAL OF CONTROL, 2017, 90 (06) :1245-1255
[10]   Pinning complex networks by a single controller [J].
Chen, Tianping ;
Liu, Xiwei ;
Lu, Wenlian .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2007, 54 (06) :1317-1326