Micron-scale pattern formation in prestressed polygonal films

被引:5
|
作者
Annabattula, R. K. [1 ]
Onck, P. R. [1 ]
机构
[1] Univ Groningen, Zernike Inst Adv Mat, NL-9747 AG Groningen, Netherlands
关键词
THIN-FILMS; DELAMINATION; FABRICATION; NETWORKS;
D O I
10.1063/1.3544467
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this paper we explore the spontaneous formation of micropatterns in thin prestressed polygonal films using finite element simulations. We study films with different size, thickness, and shape, including square, rectangular, pentagonal, and hexagonal films. Patterns form when the films release the internal eigenstrain by buckling-up, after which the films bond-back to the substrate. After an initial symmetric evolution of the buckling profile, the symmetry of the deflection pattern breaks when the wavelength of wriggles near the film edges decreases. During bond back the deflection morphology converges to a fourfold, fivefold, and sixfold ridging pattern for the square, pentagonal and hexagonal films, respectively, showing a close resemblance with experimental film systems of similar size and shape. Rectangular films of large length to width ratio go through a transition in buckling shapes from the initial Euler mode, through the varicose mode into the antisymmetric telephone-cord mode. For all the film shapes, the ratio of the film height to the effective film width scales with the square root of eigenstrain and is independent of thickness. The bond-back mechanism determines the final wrinkle morphology and is governed by the eigenstrain value at the end of the buckling-up stage and the dimensionless parameter (Gamma/EWeq)(W-eq/t)(3), relating the interface energy to the strain energy in the film. (C) 2011 American Institute of Physics. [doi:10.1063/1.3544467]
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Liquid-immiscibility-induced formation of micron-scale crystalline/amorphous composite powder
    Yu, Y.
    Takaku, Y.
    Nagasako, M.
    Wang, C. P.
    Liu, X. J.
    Kainuma, R.
    Ishida, K.
    INTERMETALLICS, 2012, 25 : 95 - 100
  • [42] An enhanced phase field model for micron-scale droplet impact with solidification microstructure formation
    Shen, Mingguang
    Li, Ben Q.
    Yang, Qingzhen
    MATERIALS RESEARCH EXPRESS, 2021, 8 (07)
  • [43] Micron-scale channel formation by the release and bond-back of pre-stressed thin films: A finite element analysis
    Annabattula, R. K.
    Huck, W. T. S.
    Onck, P. R.
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2010, 58 (04) : 447 - 465
  • [44] Light-controlled micron-scale molecular motion
    Samperi, Mario
    Bdiri, Bilel
    Sleet, Charlotte D.
    Markus, Robert
    Mallia, Ajith R.
    Perez-Garcia, Lluisa
    Amabilino, David B.
    NATURE CHEMISTRY, 2021, 13 (12) : 1200 - +
  • [45] Simulating the Effects of Interparticle Cohesion in Micron-Scale Powders
    Walton, Otis R.
    Johnson, Scott M.
    POWDERS AND GRAINS 2009, 2009, 1145 : 897 - 900
  • [46] Micron-Scale Friction and Sliding Wear of Polycrystalline Silicon Thin Structural Films in Ambient Air
    Alsem, Daan Hein
    Dugger, Michael T.
    Stach, Eric A.
    Ritchie, Robert O.
    JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2008, 17 (05) : 1144 - 1154
  • [47] Micron-scale tunability in photonic devices using microfluidics
    Monat, Christelle
    Domachuka, Peter
    Jaouen, Vincent
    Grillet, Christian
    Littler, Ian
    Croning-Golomb, Mark
    Eggleton, Benjamin J.
    Mutzenich, Simon
    Mahmud, Tanveer
    Rosengarten, Gary
    Mitchell, Arnan
    OPTOFLUIDICS, 2006, 6329
  • [48] Achieving micron-scale plasticity and theoretical strength in Silicon
    Ming Chen
    Laszlo Pethö
    Alla S. Sologubenko
    Huan Ma
    Johann Michler
    Ralph Spolenak
    Jeffrey M. Wheeler
    Nature Communications, 11
  • [49] Micron-scale buckling of SiO2 on Si
    Serrano, JR
    Cahill, DG
    JOURNAL OF APPLIED PHYSICS, 2002, 92 (12) : 7606 - 7610
  • [50] The role of debris-induced cantilever effects in cyclic fatigue of micron-scale silicon films
    Pierron, O. N.
    Muhlstein, C. L.
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2007, 30 (01) : 57 - 63