Protein radial distribution function (P-RDF) and Bayesian-Regularized Genetic Neural Networks for modeling protein conformational stability:: Chymotrypsin inhibitor 2 mutants

被引:18
作者
Fernandez, Michael [1 ]
Caballero, Julio
Fernandez, Leyden
Ignacio Abreu, Jose
Garriga, Miguel
机构
[1] Univ Matanzas, Fac Agron, Ctr Biotechnol Studies, Mol Modeling Grp, Matanzas 44740, Cuba
[2] Univ Talca, Ctr Bioinformat & Simulac Mol, Talca, Chile
[3] Univ Matanzas, Fac Informat, Artificial Intelligence Lab, Matanzas 44740, Cuba
[4] Univ Matanzas, Fac Agron, Ctr Biotechnol Studies, Plant Biotechnol Lab, Matanzas 44740, Cuba
关键词
protein stability prediction; point mutations; Bayesian regularization; artificial neural networks; genetic algorithm;
D O I
10.1016/j.jmgm.2007.04.011
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Development of novel computational approaches for modeling protein properties is a main goal in applied Proteomics. In this work, we reported the extension of the radial distribution function (RDF) scores formalism to proteins for encoding 3D structural information with modeling purposes. Protein-RDF (P-RDF) scores measure spherical distributions on protein 3D structure of 48 amino acids/residues properties selected from the AAindex data base. P-RDF scores were tested for building predictive models of the change of thermal unfolding Gibbs free energy change (Delta Delta G) of chymotrypsin inhibitor 2 upon mutations. In this sense, an ensemble of Bayesian-Regularized Genetic Neural Networks (BRGNNs) yielded an optimum nonlinear model for the conformational stability. The ensemble predictor described about 84% and 70% variance of the data in training and test sets, respectively. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:748 / 759
页数:12
相关论文
共 76 条
[1]   On the use of neural network ensembles in QSAR and QSPR [J].
Agrafiotis, DK ;
Cedeño, W ;
Lobanov, VS .
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2002, 42 (04) :903-911
[2]  
[Anonymous], P 1997 INT JOINT C N, DOI DOI 10.1109/ICNN.1997.614194
[3]   NEURAL NETWORKS APPLIED TO STRUCTURE-ACTIVITY-RELATIONSHIPS [J].
AOYAMA, T ;
SUZUKI, Y ;
ICHIKAWA, H .
JOURNAL OF MEDICINAL CHEMISTRY, 1990, 33 (03) :905-908
[4]   Chance correlation in variable subset regression: Influence of the objective function, the selection mechanism, and ensemble averaging [J].
Baumann, K .
QSAR & COMBINATORIAL SCIENCE, 2005, 24 (09) :1033-1046
[5]   ProTherm, version 4.0: thermodynamic database for proteins and mutants [J].
Bava, KA ;
Gromiha, MM ;
Uedaira, H ;
Kitajima, K ;
Sarai, A .
NUCLEIC ACIDS RESEARCH, 2004, 32 :D120-D121
[6]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[7]   Prudent modeling of core polar residues in computational protein design [J].
Bolon, DN ;
Marcus, JS ;
Ross, SA ;
Mayo, SL .
JOURNAL OF MOLECULAR BIOLOGY, 2003, 329 (03) :611-622
[8]   Large-scale prediction of protein geometry and stability changes for arbitrary single point mutations [J].
Bordner, AJ ;
Abagyan, RA .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2004, 57 (02) :400-413
[9]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[10]   POLAR HYDROGEN POSITIONS IN PROTEINS - EMPIRICAL ENERGY PLACEMENT AND NEUTRON-DIFFRACTION COMPARISON [J].
BRUNGER, AT ;
KARPLUS, M .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1988, 4 (02) :148-156