Some Results for Integral Inclusions of Volterra Type in Banach Spaces

被引:2
|
作者
Agarwal, R. P. [1 ,2 ]
Benchohra, M. [3 ]
Nieto, J. J. [4 ]
Ouahab, A. [3 ]
机构
[1] Florida Inst Technol, Dept Math Sci, Melbourne, FL 32901 USA
[2] King Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran 31261, Saudi Arabia
[3] Univ Djillali Liabes Sidi Bel Abbes, Math Lab, Sidi Bel Abbes 22000, Algeria
[4] Univ Santiago de Compostela, Fac Math, Dept Anal Matemat, Santiago De Compostela 15782, Spain
来源
ADVANCES IN DIFFERENCE EQUATIONS | 2010年
关键词
PERTURBATION; EXISTENCE; EQUATIONS; MAPS;
D O I
10.1155/2010/798067
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We first present several existence results and compactness of solutions set for the following Volterra type integral inclusions of the form: y(t) is an element of integral(t)(0) a(t - s)[Ay(s) + F(s,y(s))]ds, a.e. t is an element of J, where J = [0, b], A is the infinitesimal generator of an integral resolvent family on a separable Banach space E, and F is a set-valued map. Then the Filippov's theorem and a Filippov-Wazewski result are proved.
引用
收藏
页数:37
相关论文
共 50 条
  • [41] KRASNOSELSKII TYPE COUPLED FIXED POINT RESULTS AND ITS APPLICATIONS IN BANACH SPACES
    Abodayeh, Kamaleldin
    Zada, Mian bahadur
    Sarwar, Muhammad
    Ali, Fawad
    Ibrahim, Muhammad
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2024,
  • [42] On certain classes of functional inclusions with causal operators in Banach spaces
    Obukhovskii, Valeri
    Zecca, Pietro
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (08) : 2765 - 2777
  • [43] Existence of periodic solutions of nonlinear evolution inclusions in Banach spaces
    Xue, Xiaoping
    Cheng, Yi
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (01) : 459 - 471
  • [44] Controllability results of discrete boundary control system in Banach spaces
    Verma, Bhawna
    Malik, Muslim
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2025, 31 (02) : 169 - 187
  • [45] Some new results for Banach contractions and Edelstein contractive mappings on fuzzy metric spaces
    Ciric, Ljubomir
    CHAOS SOLITONS & FRACTALS, 2009, 42 (01) : 146 - 154
  • [46] SYSTEMS DESCRIBED BY VOLTERRA TYPE INTEGRAL OPERATORS
    Bors, Dorota
    Skowron, Andrzej
    Walczak, Stanislaw
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2014, 19 (08): : 2401 - 2416
  • [47] Solvability of Nonlinear Integral Equations of Volterra Type
    Liu, Zeqing
    Lee, Sunhong
    Kang, Shin Min
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [48] CORDIAL VOLTERRA INTEGRAL OPERATORS IN SPACES LP(0, T)
    Vainikko, Gennadi
    JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2019, 31 (02) : 283 - 305
  • [49] WEAK SOLUTIONS FOR SOME NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS WITH FRACTIONAL INTEGRAL BOUNDARY CONDITIONS IN BANACH SPACES
    Derbazi, Choukri
    Hammouche, Hadda
    Benchohra, Mouffak
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2019, 2019
  • [50] Solvability and continuous dependence results for second order nonlinear evolution inclusions with a Volterra-type operator
    Kulig, Anna
    Migorski, Stanislaw
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (13) : 4729 - 4746