Some Results for Integral Inclusions of Volterra Type in Banach Spaces

被引:2
|
作者
Agarwal, R. P. [1 ,2 ]
Benchohra, M. [3 ]
Nieto, J. J. [4 ]
Ouahab, A. [3 ]
机构
[1] Florida Inst Technol, Dept Math Sci, Melbourne, FL 32901 USA
[2] King Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran 31261, Saudi Arabia
[3] Univ Djillali Liabes Sidi Bel Abbes, Math Lab, Sidi Bel Abbes 22000, Algeria
[4] Univ Santiago de Compostela, Fac Math, Dept Anal Matemat, Santiago De Compostela 15782, Spain
来源
ADVANCES IN DIFFERENCE EQUATIONS | 2010年
关键词
PERTURBATION; EXISTENCE; EQUATIONS; MAPS;
D O I
10.1155/2010/798067
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We first present several existence results and compactness of solutions set for the following Volterra type integral inclusions of the form: y(t) is an element of integral(t)(0) a(t - s)[Ay(s) + F(s,y(s))]ds, a.e. t is an element of J, where J = [0, b], A is the infinitesimal generator of an integral resolvent family on a separable Banach space E, and F is a set-valued map. Then the Filippov's theorem and a Filippov-Wazewski result are proved.
引用
收藏
页数:37
相关论文
共 50 条