Vertical Compensation Friction Stir Welding of 6061-T6 Aluminum Alloy

被引:12
作者
Ji, Shude [1 ]
Meng, Xiangchen [1 ]
Xing, Jingwei [1 ]
Ma, Lin [1 ]
Gao, Shuangsheng [1 ]
机构
[1] Shenyang Aerosp Univ, 37 Daoyi South Ave, Shenyang 110136, Peoples R China
基金
中国国家自然科学基金;
关键词
vertical compensation friction stir welding; 6061-T6 aluminum alloy; gap; compensation strip; microstructure; MECHANICAL-PROPERTIES; MICROSTRUCTURE; PARAMETERS; 6005A-T6; JOINTS; AA6061; TOOL;
D O I
10.1515/htmp-2015-0063
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Vertical compensation friction stir welding (VCFSW) was proposed in order to solve the adverse effect caused by a big gap at the interface between two welded workpieces. VCFSW was successfully applied to weld 6061-T6 aluminum alloy with the thickness of 4 mm, while 2024-T4 aluminum alloy was selected as a rational compensation material. The results show that VCFSW is difficult to get a sound joint when the width of strip is no less than 1.5 mm. Decreasing the welding speed is beneficial to break compensation strip into pieces and then get higher quality joint. When the width of strip is 1 mm, the tensile strength and elongation of joint at the welding speed of 50 mm/min and rotational velocity of 1,800 rpm reach the maximum values of 203 MPa and 5.2%, respectively. Moreover, the addition of 2024-T4 alloy plays a strengthening effect on weld zone (WZ) of VCFSW joint. The fracture surface morphology of joint consisting of amounts of dimples exhibits ductile fracture.
引用
收藏
页码:843 / 851
页数:9
相关论文
共 25 条
[1]   Preliminary study on the microstructure and mechanical properties of dissimilar friction stir welds in aircraft aluminium alloys 2024-T351 and 6056-T4 [J].
Amancio-Filho, S. T. ;
Sheikhi, S. ;
dos Santos, J. F. ;
Bolfarini, C. .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2008, 206 (1-3) :132-142
[2]  
[Anonymous], 2000, 5173 ISO
[3]  
[Anonymous], 2001, 4136 ISO
[4]   Thermo-mechanical and microstructural issues in dissimilar friction stir welding of AA5086-AA6061 [J].
Aval, H. Jamshidi ;
Serajzadeh, S. ;
Kokabi, A. H. .
JOURNAL OF MATERIALS SCIENCE, 2011, 46 (10) :3258-3268
[5]   Material flow and mechanical behaviour of dissimilar AA2024-T3 and AA7075-T6 aluminium alloys friction stir welds [J].
da Silva, A. A. M. ;
Arruti, E. ;
Janeiro, G. ;
Aldanondo, E. ;
Alvarez, P. ;
Echeverria, A. .
MATERIALS & DESIGN, 2011, 32 (04) :2021-2027
[6]   Effects of welding speed on the microstructure and hardness in friction stir welding joints of 6005A-T6 aluminum alloy [J].
Dong, Peng ;
Li, Hongmei ;
Sun, Daqian ;
Gong, Wenbiao ;
Liu, Jie .
MATERIALS & DESIGN, 2013, 45 :524-531
[7]   Friction stir welding of dissimilar materials between AA6061 and AA7075 Al alloys effects of process parameters [J].
Guo, J. F. ;
Chen, H. C. ;
Sun, C. N. ;
Bi, G. ;
Sun, Z. ;
Wei, J. .
MATERIALS & DESIGN, 2014, 56 :185-192
[8]   Novel design of tool for joining hollow extrusion by friction stir welding [J].
Huang, Y. X. ;
Wan, L. ;
Lv, S. X. ;
Feng, J. C. .
SCIENCE AND TECHNOLOGY OF WELDING AND JOINING, 2013, 18 (03) :239-246
[9]   Vertical compensation friction stir welding assisted by external stationary shoulder [J].
Ji, Shude ;
Meng, Xiangchen ;
Ma, Lin ;
Lu, Hao ;
Gao, Shuangsheng .
MATERIALS & DESIGN, 2015, 68 :72-79
[10]   Evaluation of the microstructure and mechanical properties of friction stir welded 6005 aluminum alloy [J].
Lee, WB ;
Yeon, YM ;
Jung, SB .
MATERIALS SCIENCE AND TECHNOLOGY, 2003, 19 (11) :1513-1518