Artificial Intelligence in Thyroid Field-A Comprehensive Review

被引:33
|
作者
Bini, Fabiano [1 ]
Pica, Andrada [1 ]
Azzimonti, Laura [2 ]
Giusti, Alessandro [2 ]
Ruinelli, Lorenzo [3 ,4 ]
Marinozzi, Franco [1 ]
Trimboli, Pierpaolo [5 ,6 ]
机构
[1] Sapienza Univ Rome, Dept Mech & Aerosp Engn, I-00184 Rome, Italy
[2] Univ Svizzera Italiana USI, Scuola Univ Profess Svizzera Italiana SUPSI, Dalle Molle Inst Artificial Intelligence IDSIA, Polo Univ Lugano Campus Est, CH-6962 Lugano, Switzerland
[3] Ente Osped Cantonale, Informat & Commun Technol, CH-6500 Bellinzona, Switzerland
[4] Ente Osped Cantonale, Clin Trial Unit, CH-6500 Bellinzona, Switzerland
[5] Ente Osped Cantonale, Osped Reg Lugano & Mendrisio, Serv Endocrinol & Diabetol, CH-6900 Lugano, Switzerland
[6] Univ Svizzera Italiana USI, Fac Biomed Sci, CH-6900 Lugano, Switzerland
关键词
thyroid neoplasm; medical imaging; artificial intelligence; machine learning; deep learning; radiomics; prediction; diagnosis; MEDICAL IMAGES; RADIOMICS; ULTRASOUND; MACHINE; NODULES; DIAGNOSIS; CANCER; CLASSIFICATION; SUPPORT;
D O I
10.3390/cancers13194740
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Artificial intelligence (AI) uses mathematical algorithms to perform tasks that require human cognitive abilities. AI-based methodologies, e.g., machine learning and deep learning, as well as the recently developed research field of radiomics have noticeable potential to transform medical diagnostics. AI-based techniques applied to medical imaging allow to detect biological abnormalities, to diagnostic neoplasms or to predict the response to treatment. Nonetheless, the diagnostic accuracy of these methods is still a matter of debate. In this article, we first illustrate the key concepts and workflow characteristics of machine learning, deep learning and radiomics. We outline considerations regarding data input requirements, differences among these methodologies and their limitations. Subsequently, a concise overview is presented regarding the application of AI methods to the evaluation of thyroid images. We developed a critical discussion concerning limits and open challenges that should be addressed before the translation of AI techniques to the broad clinical use. Clarification of the pitfalls of AI-based techniques results crucial in order to ensure the optimal application for each patient.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Artificial Intelligence in Cosmetic Dermatology: A Systematic Literature Review
    Vatiwutipong, Pat
    Vachmanus, Sirawich
    Noraset, Thanapon
    Tuarob, Suppawong
    IEEE ACCESS, 2023, 11 : 71407 - 71425
  • [32] Artificial intelligence in fracture detection on radiographs: a literature review
    Lo Mastro, Antonio
    Grassi, Enrico
    Berritto, Daniela
    Russo, Anna
    Reginelli, Alfonso
    Guerra, Egidio
    Grassi, Francesca
    Boccia, Francesco
    JAPANESE JOURNAL OF RADIOLOGY, 2024, : 551 - 585
  • [33] Artificial intelligence in liver ultrasound
    Cao, Liu-Liu
    Peng, Mei
    Xie, Xiang
    Chen, Gong-Quan
    Huang, Shu-Yan
    Wang, Jia-Yu
    Jiang, Fan
    Cui, Xin-Wu
    Dietrich, Christoph F.
    WORLD JOURNAL OF GASTROENTEROLOGY, 2022, 28 (27) : 3398 - 3409
  • [34] Artificial intelligence models for periodontitis classification: A systematic review
    Zhang, Jiaming
    Deng, Shuzhi
    Zou, Ting
    Jin, Zuolin
    Jiang, Shan
    JOURNAL OF DENTISTRY, 2025, 156
  • [35] Artificial Intelligence in Acute Ischemic Stroke Subtypes According to Toast Classification: A Comprehensive Narrative Review
    Miceli, Giuseppe
    Basso, Maria Grazia
    Rizzo, Giuliana
    Pintus, Chiara
    Cocciola, Elena
    Pennacchio, Andrea Roberta
    Tuttolomondo, Antonino
    BIOMEDICINES, 2023, 11 (04)
  • [36] Artificial intelligence for the comprehensive approach to orphan/rare diseases: A scoping review
    Ruge, L. M. Acero
    Lesmes, D. A. Vasquez
    Rincon, E. H. Hernandez
    Perez, L. P. Avella
    MEDICINA DE FAMILIA-SEMERGEN, 2025, 51 (05):
  • [37] Artificial Intelligence and Lung Cancer: Impact on Improving Patient Outcomes
    Gandhi, Zainab
    Gurram, Priyatham
    Amgai, Birendra
    Lekkala, Sai Prasanna
    Lokhandwala, Alifya
    Manne, Suvidha
    Mohammed, Adil
    Koshiya, Hiren
    Dewaswala, Nakeya
    Desai, Rupak
    Bhopalwala, Huzaifa
    Ganti, Shyam
    Surani, Salim
    CANCERS, 2023, 15 (21)
  • [38] Artificial intelligence: clinical applications and future advancement in gastrointestinal cancers
    Akbari, Abolfazl
    Adabi, Maryam
    Masoodi, Mohsen
    Namazi, Abolfazl
    Mansouri, Fatemeh
    Tabaeian, Seidamir Pasha
    Eshkiki, Zahra Shokati
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2024, 7
  • [39] Artificial Intelligence Tools in Pediatric Urology: A Comprehensive Review of Recent Advances
    Chowdhury, Adiba Tabassum
    Salam, Abdus
    Naznine, Mansura
    Abdalla, Da'ad
    Erdman, Lauren
    Chowdhury, Muhammad E. H.
    Abbas, Tariq O.
    DIAGNOSTICS, 2024, 14 (18)
  • [40] Artificial intelligence in hepatocellular carcinoma diagnosis: a comprehensive review of current literature
    Chatzipanagiotou, Odysseas P.
    Loukas, Constantinos
    Vailas, Michail
    Machairas, Nikolaos
    Kykalos, Stylianos
    Charalampopoulos, Georgios
    Filippiadis, Dimitrios
    Felekouras, Evangellos
    Schizas, Dimitrios
    JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, 2024, 39 (10) : 1994 - 2005