Artificial Intelligence in Thyroid Field-A Comprehensive Review

被引:32
|
作者
Bini, Fabiano [1 ]
Pica, Andrada [1 ]
Azzimonti, Laura [2 ]
Giusti, Alessandro [2 ]
Ruinelli, Lorenzo [3 ,4 ]
Marinozzi, Franco [1 ]
Trimboli, Pierpaolo [5 ,6 ]
机构
[1] Sapienza Univ Rome, Dept Mech & Aerosp Engn, I-00184 Rome, Italy
[2] Univ Svizzera Italiana USI, Scuola Univ Profess Svizzera Italiana SUPSI, Dalle Molle Inst Artificial Intelligence IDSIA, Polo Univ Lugano Campus Est, CH-6962 Lugano, Switzerland
[3] Ente Osped Cantonale, Informat & Commun Technol, CH-6500 Bellinzona, Switzerland
[4] Ente Osped Cantonale, Clin Trial Unit, CH-6500 Bellinzona, Switzerland
[5] Ente Osped Cantonale, Osped Reg Lugano & Mendrisio, Serv Endocrinol & Diabetol, CH-6900 Lugano, Switzerland
[6] Univ Svizzera Italiana USI, Fac Biomed Sci, CH-6900 Lugano, Switzerland
关键词
thyroid neoplasm; medical imaging; artificial intelligence; machine learning; deep learning; radiomics; prediction; diagnosis; MEDICAL IMAGES; RADIOMICS; ULTRASOUND; MACHINE; NODULES; DIAGNOSIS; CANCER; CLASSIFICATION; SUPPORT;
D O I
10.3390/cancers13194740
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Artificial intelligence (AI) uses mathematical algorithms to perform tasks that require human cognitive abilities. AI-based methodologies, e.g., machine learning and deep learning, as well as the recently developed research field of radiomics have noticeable potential to transform medical diagnostics. AI-based techniques applied to medical imaging allow to detect biological abnormalities, to diagnostic neoplasms or to predict the response to treatment. Nonetheless, the diagnostic accuracy of these methods is still a matter of debate. In this article, we first illustrate the key concepts and workflow characteristics of machine learning, deep learning and radiomics. We outline considerations regarding data input requirements, differences among these methodologies and their limitations. Subsequently, a concise overview is presented regarding the application of AI methods to the evaluation of thyroid images. We developed a critical discussion concerning limits and open challenges that should be addressed before the translation of AI techniques to the broad clinical use. Clarification of the pitfalls of AI-based techniques results crucial in order to ensure the optimal application for each patient.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Artificial Intelligence and Radiomics in Cholangiocarcinoma: A Comprehensive Review
    Zerunian, Marta
    Polidori, Tiziano
    Palmeri, Federica
    Nardacci, Stefano
    Del Gaudio, Antonella
    Masci, Benedetta
    Tremamunno, Giuseppe
    Polici, Michela
    De Santis, Domenico
    Pucciarelli, Francesco
    Laghi, Andrea
    Caruso, Damiano
    DIAGNOSTICS, 2025, 15 (02)
  • [2] Artificial Intelligence in Pharmaceutical Field-A Critical Review
    Shanbhogue, Maithri H.
    Thirumaleshwar, Shailesh
    Kumar, T. M. Pramod
    Kumar, S. Hemanth
    CURRENT DRUG DELIVERY, 2021, 18 (10) : 1421 - 1431
  • [3] The Application of Artificial Intelligence in Thyroid Nodules: A Systematic Review Based on Bibliometric Analysis
    Peng, Yun
    Wang, Tong-Tong
    Wang, Jing-Zhi
    Wang, Heng
    Fan, Ruo-Yun
    Gong, Liang-Geng
    Li, Wu-Gen
    ENDOCRINE METABOLIC & IMMUNE DISORDERS-DRUG TARGETS, 2024, 24 (11) : 1280 - 1290
  • [4] A systematic review on artificial intelligence techniques for detecting thyroid diseases
    Aversano, Lerina
    Bernardi, Mario Luca
    Cimitile, Marta
    Maiellaro, Andrea
    Pecori, Riccardo
    PEERJ COMPUTER SCIENCE, 2023, 9
  • [5] Applications of artificial intelligence in dentistry: A comprehensive review
    Carrillo-Perez, Francisco
    Pecho, Oscar E.
    Carlos Morales, Juan
    Paravina, Rade D.
    Della Bona, Alvaro
    Ghinea, Razvan
    Pulgar, Rosa
    del Mar Perez, Maria
    Javier Herrera, Luis
    JOURNAL OF ESTHETIC AND RESTORATIVE DENTISTRY, 2022, 34 (01) : 259 - 280
  • [6] Artificial Intelligence in the Advanced Diagnosis of Bladder Cancer-Comprehensive Literature Review and Future Advancement
    Ferro, Matteo
    Falagario, Ugo Giovanni
    Barone, Biagio
    Maggi, Martina
    Crocetto, Felice
    Busetto, Gian Maria
    del Giudice, Francesco
    Terracciano, Daniela
    Lucarelli, Giuseppe
    Lasorsa, Francesco
    Catellani, Michele
    Brescia, Antonio
    Mistretta, Francesco Alessandro
    Luzzago, Stefano
    Piccinelli, Mattia Luca
    Vartolomei, Mihai Dorin
    Jereczek-Fossa, Barbara Alicja
    Musi, Gennaro
    Montanari, Emanuele
    de Cobelli, Ottavio
    Tataru, Octavian Sabin
    DIAGNOSTICS, 2023, 13 (13)
  • [7] Artificial intelligence in uveitis: A comprehensive review
    Nakayama, Luis F.
    Ribeiro, Lucas Z.
    Dychiao, Robyn G.
    Zamora, Yuslay F.
    Regatieri, Caio V. S.
    Celi, Leo A.
    Silva, Paolo
    Sobrin, Lucia
    Belfort Jr, Rubens
    SURVEY OF OPHTHALMOLOGY, 2023, 68 (04) : 669 - 677
  • [8] A comprehensive review on heart disease prognostication using different artificial intelligence algorithms
    Fathima, A. Jainul
    Fasla, M. M. Noor
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, 2024, 27 (11) : 1357 - 1374
  • [9] Artificial Intelligence for Thyroid Nodule Characterization: Where Are We Standing?
    Sorrenti, Salvatore
    Dolcetti, Vincenzo
    Radzina, Maija
    Bellini, Maria Irene
    Frezza, Fabrizio
    Munir, Khushboo
    Grani, Giorgio
    Durante, Cosimo
    D'Andrea, Vito
    David, Emanuele
    Calo, Pietro Giorgio
    Lori, Eleonora
    Cantisani, Vito
    CANCERS, 2022, 14 (14)
  • [10] Unlocking the secrets of metabolomics with Artificial Intelligence: a comprehensive literature review
    Kopec, Karolina Krystyna
    Cannas, Federico
    Piras, Cristina
    Spada, Martina
    Noto, Antonio
    Atzori, Luigi
    Fanos, Vassilios
    JOURNAL OF PEDIATRIC AND NEONATAL INDIVIDUALIZED MEDICINE, 2024, 13 (01): : 1 - 21