Evaluating Tumor-Infiltrating Lymphocytes in Breast Cancer Using Preoperative MRI-Based Radiomics

被引:31
作者
Bian, Tiantian [1 ]
Wu, Zengjie [2 ]
Lin, Qing [1 ]
Mao, Yan [1 ]
Wang, Haibo [1 ]
Chen, Jingjing [1 ]
Chen, Qianqian [3 ]
Fu, Guangming [4 ]
Cui, Chunxiao [1 ]
Su, Xiaohui [1 ]
机构
[1] Qingdao Univ, Affiliated Hosp, Breast Dis Ctr, Qingdao, Peoples R China
[2] Qingdao Univ, Affiliated Hosp, Dept Radiol, Qingdao, Peoples R China
[3] GE Healthcare, Precis Hlth Inst, Shanghai, Peoples R China
[4] Qingdao Univ, Affiliated Hosp, Dept Pathol, Qingdao, Peoples R China
关键词
radiomics signature; MRI; breast cancer; tumor-infiltrating lymphocytes; PROGNOSTIC VALUE; CHEMOTHERAPY; LEVEL;
D O I
10.1002/jmri.27910
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background Evaluating tumor-infiltrating lymphocytes (TILs) in patients with breast cancer using radiomics has been rarely explored. Purpose To establish a radiomics nomogram based on dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) for preoperatively evaluating TIL level. Study Type Retrospective. Population A total of 154 patients with breast cancer were divided into a training cohort (N = 87) and a test cohort (N = 67), who were further divided into low TIL (<50%) and high TIL (>= 50%) subgroups according to the histopathological results. Field Strength/Sequence 3.0 T; axial T2-weighted imaging (fast spin echo), diffusion-weighted imaging (spin echo-echo planar imaging), and the volume imaging for breast assessment DCE sequence (gradient recalled echo). Assessment A radiomics signature was developed from the training dataset and independent risk factors were selected by multivariate logistic regression to build a clinical model. A nomogram model was built by combining radiomics score and risk factors. The performance of the nomogram was assessed using calibration curves and decision curves. The area under the receiver operating characteristic (ROC) curve, accuracy, sensitivity, and specificity were calculated. Statistical Tests The least absolute shrinkage and selection operator, univariate and multivariate logistic regression analysis, t-tests and chi-squared tests or Fisher's exact test, Hosmer-Lemeshow test, ROC analysis, and decision curve analysis were conducted. P < 0.05 was considered statistically significant. Results The radiomics signature and nomogram model exhibited better calibration and validation performance in the training (radiomics: area under the curve [AUC] 0.86; nomogram: AUC 0.88) and test (radiomics: AUC 0.83; nomogram: AUC 0.84) datasets compared with clinical model (training: AUC 0.76; test: AUC 0.72). The decision curve demonstrated that the nomogram model exhibited better performance than the clinical model, with a threshold probability between 0.15 and 0.9. Data Conclusion The nomogram model based on preoperative MRI exhibited an excellent ability for the noninvasive evaluation of TILs in breast cancer. Level of Evidence 4 Technical Efficacy Stage 2
引用
收藏
页码:772 / 784
页数:13
相关论文
共 37 条
[1]   Prognostic Value of Tumor-Infiltrating Lymphocytes in Triple-Negative Breast Cancers From Two Phase III Randomized Adjuvant Breast Cancer Trials: ECOG 2197 and ECOG 1199 [J].
Adams, Sylvia ;
Gray, Robert J. ;
Demaria, Sandra ;
Goldstein, Lori ;
Perez, Edith A. ;
Shulman, Lawrence N. ;
Martino, Silvana ;
Wang, Molin ;
Jones, Vicky E. ;
Saphner, Thomas J. ;
Wolff, Antonio C. ;
Wood, William C. ;
Davidson, Nancy E. ;
Sledge, George W. ;
Sparano, Joseph A. ;
Badve, Sunil S. .
JOURNAL OF CLINICAL ONCOLOGY, 2014, 32 (27) :2959-+
[2]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[3]   Radiomic signatures derived from multiparametric MRI for the pretreatment prediction of response to neoadjuvant chemotherapy in breast cancer [J].
Bian, Tiantian ;
Wu, Zengjie ;
Lin, Qing ;
Wang, Haibo ;
Ge, Yaqiong ;
Duan, Shaofeng ;
Fu, Guangming ;
Cui, Chunxiao ;
Su, Xiaohui .
BRITISH JOURNAL OF RADIOLOGY, 2020, 93 (1115)
[4]   Usefulness of imaging findings in predicting tumor-infiltrating lymphocytes in patients with breast cancer [J].
Celebi, Filiz ;
Agacayak, Filiz ;
Ozturk, Alper ;
Ilgun, Serkan ;
Ucuncu, Muhammed ;
Iyigun, Zeynep Erdogan ;
Ordu, Cetin ;
Pilanci, Kezban Nur ;
Alco, Gul ;
Gultekin, Serap ;
Cindil, Emetullah ;
Soybir, Gursel ;
Aktepe, Fatma ;
Ozmen, Vahit .
EUROPEAN RADIOLOGY, 2020, 30 (04) :2049-2057
[5]   Correlation between magnetic resonance imaging and the level of tumor-infiltrating lymphocytes in patients with estrogen receptor-negative HER2-positive breast cancer [J].
Choi, Woo Jung ;
Kim, Youyeon ;
Cha, Joo Hee ;
Shin, Hee Jung ;
Chae, Eun Young ;
Yoon, Ga Young ;
Kim, Hak Hee .
ACTA RADIOLOGICA, 2020, 61 (01) :3-10
[6]   A New Challenge for Radiologists: Radiomics in Breast Cancer [J].
Crivelli, Paola ;
Ledda, Roberta Eufrasia ;
Parascandolo, Nicola ;
Fara, Alberto ;
Soro, Daniela ;
Conti, Maurizio .
BIOMED RESEARCH INTERNATIONAL, 2018, 2018
[7]   Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy [J].
Denkert, Carsten ;
von Minckwitz, Gunter ;
Darb-Esfahani, Silvia ;
Lederer, Bianca ;
Heppner, Barbara I. ;
Weber, Karsten E. ;
Budczies, Jan ;
Huober, Jens ;
Klauschen, Frederick ;
Furlanetto, Jenny ;
Schmitt, Wolfgang D. ;
Blohmer, Jens-Uwe ;
Karn, Thomas ;
Pfitzner, Berit M. ;
Kuemmel, Sherko ;
Engels, Knut ;
Schneeweiss, Andreas ;
Hartmann, Arndt ;
Noske, Aurelia ;
Fasching, Peter A. ;
Jackisch, Christian ;
van Mackelenbergh, Marion ;
Sinn, Peter ;
Schem, Christian ;
Hanusch, Claus ;
Untch, Michael ;
Loibl, Sibylle .
LANCET ONCOLOGY, 2018, 19 (01) :40-50
[8]   Tumor-Infiltrating Lymphocytes and Response to Neoadjuvant Chemotherapy With or Without Carboplatin in Human Epidermal Growth Factor Receptor 2-Positive and Triple-Negative Primary Breast Cancers [J].
Denkert, Carsten ;
von Minckwitz, Gunter ;
Brase, Jan C. ;
Sinn, Bruno V. ;
Gade, Stephan ;
Kronenwett, Ralf ;
Pfitzner, Berit M. ;
Salat, Christoph ;
Loi, Sherene ;
Schmitt, Wolfgang D. ;
Schem, Christian ;
Fisch, Karin ;
Darb-Esfahani, Silvia ;
Mehta, Keyur ;
Sotiriou, Christos ;
Wienert, Stephan ;
Klare, Peter ;
Andre, Fabrice ;
Klauschen, Frederick ;
Blohmer, Jens-Uwe ;
Krappmann, Kristin ;
Schmidt, Marcus ;
Tesch, Hans ;
Kuemmel, Sherko ;
Sinn, Peter ;
Jackisch, Christian ;
Dietel, Manfred ;
Reimer, Toralf ;
Untch, Michael ;
Loibl, Sibylle .
JOURNAL OF CLINICAL ONCOLOGY, 2015, 33 (09) :983-991
[9]   Tumor-Associated Lymphocytes As an Independent Predictor of Response to Neoadjuvant Chemotherapy in Breast Cancer [J].
Denkert, Carsten ;
Loibl, Sibylle ;
Noske, Aurelia ;
Roller, Marc ;
Mueller, Berit Maria ;
Komor, Martina ;
Budczies, Jan ;
Darb-Esfahani, Silvia ;
Kronenwett, Ralf ;
Hanusch, Claus ;
von Toerne, Christian ;
Weichert, Wilko ;
Engels, Knut ;
Solbach, Christine ;
Schrader, Iris ;
Dietel, Manfred ;
von Minckwitz, Gunter .
JOURNAL OF CLINICAL ONCOLOGY, 2010, 28 (01) :105-113
[10]   New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1) [J].
Eisenhauer, E. A. ;
Therasse, P. ;
Bogaerts, J. ;
Schwartz, L. H. ;
Sargent, D. ;
Ford, R. ;
Dancey, J. ;
Arbuck, S. ;
Gwyther, S. ;
Mooney, M. ;
Rubinstein, L. ;
Shankar, L. ;
Dodd, L. ;
Kaplan, R. ;
Lacombe, D. ;
Verweij, J. .
EUROPEAN JOURNAL OF CANCER, 2009, 45 (02) :228-247