Aggregation of nanoparticles in endosomes and lysosomes produces surface-enhanced Raman spectroscopy

被引:9
|
作者
Lucas, Leanne J. [1 ]
Chen, Xiaoke K. [2 ]
Smith, Aaron J. [1 ]
Korbelik, Mladen [3 ]
Zeng, Haishan [3 ]
Lee, Patrick W. K. [4 ]
Hewitt, Kevin Cecil [1 ]
机构
[1] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS B3H 4R2, Canada
[2] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada
[3] British Columbia Canc Res Ctr, Imaging Unit, Vancouver, BC V5Z 1L3, Canada
[4] Dalhousie Univ, Dept Microbiol & Immunol, Halifax, NS B3H 4R2, Canada
基金
加拿大创新基金会;
关键词
surface-enhanced Raman spectroscopy; epidermal growth factor receptor overexpression; gold nanoparticles; cancer imaging; endosomes; lysosomes; GROWTH-FACTOR RECEPTOR; EXPRESSION; SPECTRA;
D O I
10.1117/1.JNP.9.093094
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The purpose of this study was to explore the use of surface-enhanced Raman spectroscopy (SERS) to image the distribution of epidermal growth factor receptor (EGFR) in cells. To accomplish this task, 30-nm gold nanoparticles (AuNPs) tagged with antibodies to EGFR (10(12) per mL) were incubated with cells (10(6) per mL) of the A431 human epidermoid carcinoma and normal human bronchial epithelial cell lines. Using the 632.8-nm excitation line of a He-Ne laser, Raman spectroscopy measurements were performed using a point mapping scheme. Normal cells show little to no enhancement. SERS signals were observed inside the cytoplasm of A431 cells with an overall enhancement of 4 to 7 orders of magnitude. Raman intensity maps of the 1450 and 1583 cm(-1) peaks correlate well with the expected distribution of EGFR and AuNPs, aggregated following uptake by endosomes and lysosomes. Spectral features from tyrosine and tryptophan residues dominate the SERS signals. (C) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Self-Assembly of Large Gold Nanoparticles for Surface-Enhanced Raman Spectroscopy
    Yang, Guang
    Nanda, Jagjit
    Wang, Boya
    Chen, Gang
    Hallinan, Daniel T., Jr.
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (15) : 13457 - 13470
  • [32] Surface-enhanced Raman spectroscopy of indanthrone and flavanthrone
    Chang, Jingjing
    Canamares, Maria Vega
    Aydin, Metin
    Vetter, Wilfried
    Schreiner, Manfred
    Xu, Weiqing
    Lombardi, John R.
    JOURNAL OF RAMAN SPECTROSCOPY, 2009, 40 (11) : 1557 - 1563
  • [33] Surface-enhanced Raman spectroscopy of bacteria and pollen
    Sengupta, A
    Laucks, ML
    Davis, EJ
    APPLIED SPECTROSCOPY, 2005, 59 (08) : 1016 - 1023
  • [34] Special issue on surface-enhanced Raman spectroscopy
    Alvarez-Puebla, Ramon A.
    Ling, Xing Yi
    Candeloro, Patrizio
    de la Chapelle, Marc Lamy
    JOURNAL OF OPTICS, 2015, 17 (11)
  • [35] Quantitative Analysis of Surface-Enhanced Raman Spectroscopy
    Tao Qin
    Dong Jian
    Qian Weiping
    PROGRESS IN CHEMISTRY, 2013, 25 (06) : 1031 - 1041
  • [36] Dimensional Design for Surface-Enhanced Raman Spectroscopy
    Long, Li
    Ju, Wenbo
    Yang, Hai-Yao
    Li, Zhiyuan
    ACS MATERIALS AU, 2022, 2 (05): : 552 - 575
  • [37] Surface-Enhanced Raman Spectroscopy for Nitrite Detection
    Yang, Dongchang
    Youden, Brian
    Yu, Naizhen
    Carrier, Andrew J.
    Servos, Mark R.
    Oakes, Ken D.
    Zhang, Xu
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2025, 73 (04) : 2221 - 2235
  • [38] Surface-enhanced Raman spectroscopy for in vivo biosensing
    Laing, Stacey
    Jamieson, Lauren E.
    Faulds, Karen
    Graham, Duncan
    NATURE REVIEWS CHEMISTRY, 2017, 1 (08)
  • [39] Graphene: A Platform for Surface-Enhanced Raman Spectroscopy
    Xu, Weigao
    Mao, Nannan
    Zhang, Jin
    SMALL, 2013, 9 (08) : 1206 - 1224
  • [40] Multiplexed microfluidic surface-enhanced Raman spectroscopy
    Abu-Hatab, Nahla A.
    John, Joshy F.
    Oran, Jenny M.
    Sepaniak, Michael J.
    APPLIED SPECTROSCOPY, 2007, 61 (10) : 1116 - 1122