Numerical solutions of the Gardner equation by extended form of the cubic B-splines

被引:12
|
作者
Hepson, Ozlem Ersoy [1 ]
Korkmaz, Alper [2 ]
Dag, Idris [3 ]
机构
[1] Eskisehir Osmangazi Univ, Math & Comp Dept, Eskisehir, Turkey
[2] Cankiri Karatekin Univ, Dept Math, Cankiri, Turkey
[3] Eskisehir Osmangazi Univ, Comp Engn Dept, Eskisehir, Turkey
来源
PRAMANA-JOURNAL OF PHYSICS | 2018年 / 91卷 / 04期
关键词
Gardner equation; soliton; perturbation; wave generation; extended B-spline; SOLITONS;
D O I
10.1007/s12043-018-1631-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The extended definition of the polynomial B-splines may give a chance to improve the results obtained by the classical cubic polynomial B-splines. The optimum value of the extension parameter can be determined by scanning some intervals containing zero. This study aims to solve some initial boundary value problems constructed for the Gardner equation by the extended cubic B-spline collocation method. The test problems are derived from some analytical studies to validate the efficiency and accuracy of the suggested method. The conservation laws are also determined to observe whether the test problems remain constant as expected from the theoretical aspect. The stability of the proposed method is investigated by the von Neumann analysis.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] A numerical solution of the RLW equation by Galerkin method using quartic B-splines
    Saka, Buelent
    Dag, Idris
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2008, 24 (11): : 1339 - 1361
  • [42] Taylor-Galerkin and Taylor-collocation methods for the numerical solutions of Burgers' equation using B-splines
    Dag, Idris
    Canivar, Aynur
    Sahin, All
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (07) : 2696 - 2708
  • [43] GALERKIN METHODS FOR THE NUMERICAL SOLUTION OF THE SCHRODINGER EQUATION BY USING TRIGONOMETRIC B-SPLINES
    MERSIN, M. A.
    IRK, D.
    GORGULU, M. Z. O. R. S. A. H. I. N.
    MISKOLC MATHEMATICAL NOTES, 2022, 23 (01) : 363 - 380
  • [44] DATA REDUCTION USING CUBIC RATIONAL B-SPLINES
    CHOU, JJ
    PIEGL, LA
    IEEE COMPUTER GRAPHICS AND APPLICATIONS, 1992, 12 (03) : 60 - 68
  • [45] Galerkin method for the numerical solution of the RLW equation using quadratic B-splines
    Saka, B
    Dag, I
    Dogan, A
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2004, 81 (06) : 727 - 739
  • [46] Exponential B-splines Galerkin Method for the Numerical Solution of the Fisher’s Equation
    Melis Zorsahin Gorgulu
    Idris Dag
    Iranian Journal of Science and Technology, Transactions A: Science, 2018, 42 : 2189 - 2198
  • [47] LINE MONOTONIC PARTITIONING OF PLANAR CUBIC B-SPLINES
    DANIELS, KM
    BERGERON, RD
    GRINSTEIN, GG
    COMPUTERS & GRAPHICS, 1992, 16 (01) : 55 - 68
  • [48] Exponential B-Splines for Numerical Solutions to Some Boussinesq Systems for Water Waves
    Ozlem Ersoy
    Alper Korkmaz
    Idiris Dağ
    Mediterranean Journal of Mathematics, 2016, 13 : 4975 - 4994
  • [49] A Taylor-Galerkin finite element method for the KdV equation using cubic B-splines
    Canivar, Aynur
    Sari, Murat
    Dag, Idris
    PHYSICA B-CONDENSED MATTER, 2010, 405 (16) : 3376 - 3383
  • [50] Exponential B-Splines for Numerical Solutions to Some Boussinesq Systems for Water Waves
    Ersoy, Ozlem
    Korkmaz, Alper
    Dag, Idiris
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (06) : 4975 - 4994