Ringing the eigenmodes from compact manifolds

被引:10
作者
Cornish, NJ [1 ]
Turok, NG [1 ]
机构
[1] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 9EW, England
关键词
D O I
10.1088/0264-9381/15/9/016
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a method for finding the eigenmodes of the Laplace operator acting on any compact manifold. The procedure can be used to simulate cosmic microwave background fluctuations in multi-connected cosmological models. Other applications include studies of chaotic mixing and quantum chaos.
引用
收藏
页码:2699 / 2710
页数:12
相关论文
共 11 条
[1]   PERIODIC-ORBIT SUM-RULES FOR THE HADAMARD-GUTZWILLER MODEL [J].
AURICH, R ;
STEINER, F .
PHYSICA D, 1989, 39 (2-3) :169-193
[2]   QUANTUM MAPS [J].
BERRY, MV ;
BALAZS, NL ;
TABOR, M ;
VOROS, A .
ANNALS OF PHYSICS, 1979, 122 (01) :26-63
[3]  
BUSER P, 1980, P41 S PUR MATH
[4]   EIGENVALUE COMPARISON THEOREMS AND ITS GEOMETRIC APPLICATIONS [J].
CHEN, SY .
MATHEMATISCHE ZEITSCHRIFT, 1975, 143 (03) :289-297
[5]   Circles in the sky: finding topology with the microwave background radiation [J].
Cornish, NJ ;
Spergel, DN ;
Starkman, GD .
CLASSICAL AND QUANTUM GRAVITY, 1998, 15 (09) :2657-2670
[6]   ENERGY SPECTRUM ACCORDING TO CLASSICAL MECHANICS [J].
GUTZWILL.MC .
JOURNAL OF MATHEMATICAL PHYSICS, 1970, 11 (06) :1791-&
[7]   PERIODIC ORBITS AND CLASSICAL QUANTIZATION CONDITIONS [J].
GUTZWILL.MC .
JOURNAL OF MATHEMATICAL PHYSICS, 1971, 12 (03) :343-&
[8]  
Lachieze-Rey M., 1995, Physics Reports, V254, P135, DOI 10.1016/0370-1573(94)00085-H
[9]   The topology of the universe: the biggest manifold of them all [J].
Levin, J ;
Scannapieco, E ;
Silk, J .
CLASSICAL AND QUANTUM GRAVITY, 1998, 15 (09) :2689-2697
[10]   Reconstructing the global topology of the universe from the cosmic microwave background [J].
Weeks, JR .
CLASSICAL AND QUANTUM GRAVITY, 1998, 15 (09) :2599-2604