A numerical bifurcation function for homoclinic orbits

被引:3
|
作者
Ashwin, P
Mei, Z
机构
[1] Inst Nonlineaire Nice, F-06560 Valbonne, France
[2] Univ Marburg, Fachbereich Math, D-35032 Marburg, Germany
关键词
periodic solutions; homoclinic orbit; numerical bifurcation function;
D O I
10.1137/S0036142996298168
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a numerical method to locate periodic orbits near homoclinic orbits. Using a method of [X.-B. Lin, Proc. Roy. Soc. Edinburgh, 116A (1990), pp. 295-325] and solutions of the adjoint variational equation, we get a bifurcation function for periodic orbits, whose periods are asymptotic to infinity on approaching a homoclinic orbit. As a bonus, a linear predictor for continuation of the homoclinic orbit is easily available. Numerical approximation of the homoclinic orbit and the solution of the adjoint variational equation are discussed. We consider a class of methods for approximating the latter equation such that a scalar quantity is preserved. We also consider a context where the effects of continuous symmetries of equations can be incorporated. Applying the method to an ordinary differential equation on R-3 studied by [E. Freire, A. Rodriguez-Luis, and E. Ponce, Phys. D, 62 (1993), pp. 230-253] we show the bifurcation function gives good agreement with path-followed solutions even down to low period. As an example application to a parabolic partial differential equation (PDE), we examine the bifurcation function for a homoclinic orbit in the Kuramoto-Sivashinsky equation.
引用
收藏
页码:2055 / 2069
页数:15
相关论文
共 50 条
  • [21] EXISTENCE OF HOMOCLINIC ORBITS FOR A CLASS OF NONLINEAR FUNCTIONAL DIFFERENCE EQUATIONS
    Liu, Xia
    Zhou, Tao
    Shi, Haiping
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,
  • [22] Grazing, Homoclinic Orbits and Chaos in a Single-Loop Feedback System with a Discontinuous Function
    Horikawa, Yo
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2023, 33 (13):
  • [23] Bifurcation from a homoclinic orbit in partial functional differential equations
    Ruan, SG
    Wei, JJ
    Wu, JH
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2003, 9 (05) : 1293 - 1322
  • [24] Homoclinic orbits and Jacobi stability on the orbits of Maxwell-Bloch system
    Liu, Yongjian
    Chen, Haimei
    Lu, Xiaoting
    Feng, Chunsheng
    Liu, Aimin
    APPLICABLE ANALYSIS, 2022, 101 (13) : 4377 - 4396
  • [25] HOMOCLINIC ORBITS IN PERTURBED GENERALIZED HAMILTONIAN SYSTEMS
    赵晓华
    李继彬
    黄克累
    Acta Mathematica Scientia, 1996, (04)
  • [26] On homoclinic and heteroclinic orbits of Chen's system
    Li, Tiecheng
    Chen, Guoting
    Chen, Guanrong
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (10): : 3035 - 3041
  • [27] Maslov index for homoclinic orbits of Hamiltonian systems
    Chen, Chao-Nien
    Hu, Xijun
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2007, 24 (04): : 589 - 603
  • [28] Homoclinic orbits and periodic solutions for a class of Hamiltonian systems on time scales
    Su, Youhui
    Feng, Zhaosheng
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 411 (01) : 37 - 62
  • [29] Homoclinic orbits for asymptotically linear Hamiltonian systems
    Szulkin, A
    Zou, WM
    JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 187 (01) : 25 - 41
  • [30] Homoclinic orbits in perturbed generalized Hamiltonian systems
    Zhao, XH
    Li, JB
    Huang, KL
    ACTA MATHEMATICA SCIENTIA, 1996, 16 (04) : 361 - 374