共 48 条
Genetic disruption of protein kinase a anchoring reveals a role for compartmentalized kinase signaling in theta-burst long-term Potentiation and spatial memory
被引:39
作者:
Nie, Ting
McDonough, Conor B.
Huang, Ted
Nguyen, Peter V.
Abel, Ted
[1
]
机构:
[1] Univ Penn, Dept Biol, Philadelphia, PA 19104 USA
[2] Univ Alberta, Sch Med, Ctr Neurosci, Dept Physiol, Edmonton, AB T6G 2H7, Canada
[3] Univ Alberta, Sch Med, Ctr Neurosci, Dept Psychiat, Edmonton, AB T6G 2H7, Canada
关键词:
cAMP-dependent protein kinase;
A kinase-anchoring proteins;
hippocampus;
spatial memory;
synaptic plasticity;
LTP;
D O I:
10.1523/JNEUROSCI.1602-07.2007
中图分类号:
Q189 [神经科学];
学科分类号:
071006 ;
摘要:
Studies of hippocampal long-term potentiation (LTP), a cellular model of memory storage, implicate cAMP-dependent protein kinase (PKA) in presynaptic and postsynaptic mechanisms of LTP. The anchoring of PKA to AKAPs (A kinase-anchoring proteins) creates compartmentalized pools of PKA, but the roles of presynaptically and postsynaptically anchored forms of PKA in late-phase LTP are unclear. In this study, we have created genetically modified mice that conditionally express Ht31, an inhibitor of PKA anchoring, to probe the roles of anchored PKA in hippocampal LTP and spatial memory. Our findings show that at hippocampal Schaffer collateral CA3-CA1 synapses, theta-burst LTP requires presynaptically anchored PKA. In addition, a pool of anchored PKA in hippocampal area CA3 is required for spatial memory. These findings reveal a novel and significant role for anchored PKA signaling in cellular mechanisms underlying memory storage.
引用
收藏
页码:10278 / 10288
页数:11
相关论文