In this manuscript, in order to reduce methanol permeability and, at the same time, to increase proton conductivity THS-PSA containing silica compound, responsible for methanol permeability reduction, and sulfonic acid, responsible for proton conductivity enhancement, was applied onto PVA/PSSA-MA membranes. And in order to improve durability, the resulting membranes, PVA/PSSAMA/THS-PSA, were exposed to 500ppm F2 gas at varying reaction times. The surface-fluorinated membranes were characterized through the measurement of contact angles, thermo-gravimetric analysis, and X-ray photoelectron spectroscopy to observe the physico-chemical changes. For the evaluation of the electro-chemical changes in the resulting membranes, its water contents, ion exchange capacity, proton conductivity, and methanol permeability were measured and then compared with the commercial membrane, Nafion 115. Finally, the membran electrode assembly (MEA) was prepared and the cell voltage against the current density was measured. As fluorination time increased, the contents of F2 increased up to maximum 4.3% and to depth of 50 nm. At 60 mm of fluorination, the proton conductivity was 0.036 S/cm, larger than Nafion 115 at 0.024 S/cm, and the methanol permeability was 9.26E-08 cm(2)/s, less than Nafion 115 at 1.17E-06 cm(2)/s.