Development of the arc plasma torch operation mathematical model for spheroidization of fine-dispersed powders

被引:1
作者
Murashov, I [1 ]
Frolov, V [1 ]
Kadyrov, A. [1 ]
机构
[1] Peter Great St Petersburg Polytech Univ, St Petersburg, Russia
来源
SCIENTIFIC TECHNICAL CONFERENCE ON LOW TEMPERATURE PLASMA DURING THE DEPOSITION OF FUNCTIONAL COATINGS (LTP COATINGS 2017) | 2018年 / 1058卷
关键词
D O I
10.1088/1742-6596/1058/1/012024
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Brief review of the fine-dispersed powders production technologies for additive laser technologies is presented in the paper. Non-stationary mathematical model of DC plasma torch operation and stationary model of the reactor operation for powder spheroidization have been developed. Air is used as the plasma-forming gas. The influence of the transporting flow and compressing gases on the characteristics of the plasma flow is analyzed. Verification of the non-stationary mathematical model of DC plasma torch operation is based on experimental studies. Radial temperature distributions obtained from the results of numerical simulation and spectral diagnostics of the plasma torch PN-V1 are presented. The results of the experimental study describing plasma flow behavior for given parameters of the fine-dispersed powders spheroidization process are presented in the paper.
引用
收藏
页数:4
相关论文
共 50 条
[31]   Mathematical model for particles heating in tubular transferred plasma arc [J].
Mihovsky, M ;
Angelova, V ;
Petkov, V .
PROGRESS IN PLASMA PROCESSING OF MATERIALS 2001, 2001, :713-720
[32]   Mathematical model of variable polarity plasma arc welding process [J].
Proc Natl Sci Counc Repub China Part A Phys Sci Eng, 1 (90-109)
[33]   Calculation of Energy and Physical Parameters for Plasma Torch Using the Maecker Arc Cylindrical Model [J].
Kruchinin, A. M. ;
Pogrebisskiy, M. Ya. ;
Ryazanova, E. S. ;
Chursin, A. Yu. .
INORGANIC MATERIALS-APPLIED RESEARCH, 2023, 14 (03) :649-655
[34]   A MODEL OF FLUID, HEAT-FLOW, AND ELECTROMAGNETIC PHENOMENA IN A NONTRANSFERRED ARC PLASMA TORCH [J].
WESTHOFF, R ;
SZEKELY, J .
JOURNAL OF APPLIED PHYSICS, 1991, 70 (07) :3455-3466
[35]   Calculation of Energy and Physical Parameters for Plasma Torch Using the Maecker Arc Cylindrical Model [J].
A. M. Kruchinin ;
M. Ya. Pogrebisskiy ;
E. S. Ryazanova ;
A. Yu. Chursin .
Inorganic Materials: Applied Research, 2023, 14 :649-655
[36]   Properties of Powders Produced by Plasma-Arc Spheroidization of Current-Carrying Fe-Al Flux-Cored Wire [J].
Adeeva, L. I. ;
Tunik, A. Yu. ;
Korzhyk, V. M. ;
Strogonov, D. V. ;
Kostin, V. A. ;
Konoreva, O. V. .
POWDER METALLURGY AND METAL CERAMICS, 2024, 63 (1-2) :12-23
[37]   CONSTRUCTION OF A MATHEMATICAL-MODEL FOR MHD GENERATOR ELECTRODES IN THE ARC REGIME OF OPERATION [J].
POBEREZHSKII, LP .
HIGH TEMPERATURE, 1978, 16 (03) :527-530
[38]   Mathematical Model of the Operation of a Synchronous Generator on an Arc Initiated by Exploding Wires. [J].
Khor'kov, K.A. ;
Frankovskii, B.A. .
Elektronnaya Obrabotka Materialov, 1984, (04)
[39]   CALCULATION OF DC ARC PLASMA TORCH VOLTAGE-CURRENT CHARACTERISTICS BASED ON STEENBECK MODEL [J].
Gnedenko, V. G. ;
Ivanov, A. A. ;
Pereslavtsev, A., V ;
Tresviatsky, S. S. .
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2006, (05) :75-+
[40]   Preparation and characterization of ultra-fine diamond powders obtained by using a dc arc plasma jet [J].
Moriyoshi, Y ;
Futaki, M ;
Komatsu, S ;
Okada, K ;
Ishigaki, T ;
Ekinaga, N .
JOURNAL OF MATERIALS SCIENCE, 1996, 31 (13) :3579-3582