Deep Convolutional Inverse Graphics Network

被引:0
|
作者
Kulkarni, Tejas D. [1 ]
Whitney, William F. [1 ]
Kohli, Pushmeet [2 ]
Tenenbaum, Joshua B. [1 ]
机构
[1] MIT, Cambridge, MA 02139 USA
[2] Microsoft Res, Cambridge, England
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents the Deep Convolution Inverse Graphics Network (DC-IGN), a model that aims to learn an interpretable representation of images, disentangled with respect to three-dimensional scene structure and viewing transformations such as depth rotations and lighting variations. The DC-IGN model is composed of multiple layers of convolution and de-convolution operators and is trained using the Stochastic Gradient Variational Bayes (SGVB) algorithm [10]. We propose a training procedure to encourage neurons in the graphics code layer to represent a specific transformation (e.g. pose or light). Given a single input image, our model can generate new images of the same object with variations in pose and lighting. We present qualitative and quantitative tests of the model's efficacy at learning a 3D rendering engine for varied object classes including faces and chairs.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Convolutional Deep Feedforward Network for Image Classification
    Lau, Mian Mian
    Phang, Jonathan Then Sien
    Lim, King Hann
    2019 7TH INTERNATIONAL CONFERENCE ON SMART COMPUTING & COMMUNICATIONS (ICSCC), 2019, : 99 - 102
  • [42] Relative Attributes with Deep Convolutional Neural Network
    Kim, Dong-Jin
    Yoo, Donggeun
    Im, Sunghoon
    Kim, Namil
    Sirinukulwattana, Tharatch
    Kweon, In So
    2015 12TH INTERNATIONAL CONFERENCE ON UBIQUITOUS ROBOTS AND AMBIENT INTELLIGENCE (URAI), 2015, : 157 - 158
  • [43] Deep Convolutional Generalized Classifier Neural Network
    Sarigul, Mehmet
    Ozyildirim, B. Melis
    Avci, Mutlu
    NEURAL PROCESSING LETTERS, 2020, 51 (03) : 2839 - 2854
  • [44] Deep learning with convolutional neural network in radiology
    Yasaka, Koichiro
    Akai, Hiroyuki
    Kunimatsu, Akira
    Kiryu, Shigeru
    Abe, Osamu
    JAPANESE JOURNAL OF RADIOLOGY, 2018, 36 (04) : 257 - 272
  • [45] ZooplanktoNet: Deep Convolutional Network for Zooplankton Classification
    Dai, Jialun
    Wang, Ruchen
    Zheng, Haiyong
    Ji, Guangrong
    Qiao, Xiaoyan
    OCEANS 2016 - SHANGHAI, 2016,
  • [46] Deep Convolutional Network Improves Completion Design
    Li, Liwei
    Nasrabadi, Nasser
    Carr, Timothy
    JPT, Journal of Petroleum Technology, 2022, 74 (04): : 66 - 68
  • [47] Deep Convolutional Network For Arabic sentiment Analysis
    Omara, Eslam
    Mosa, Mervat
    Ismail, Nabil
    2018 PROCEEDINGS OF THE INTERNATIONAL JAPAN-AFRICA CONFERENCE ON ELECTRONICS, COMMUNICATIONS, AND COMPUTATIONS (JAC-ECC 2018), 2018, : 155 - 159
  • [48] Deep learning with convolutional neural network in radiology
    Koichiro Yasaka
    Hiroyuki Akai
    Akira Kunimatsu
    Shigeru Kiryu
    Osamu Abe
    Japanese Journal of Radiology, 2018, 36 : 257 - 272
  • [49] Military Surveillance with Deep Convolutional Neural Network
    Gupta, Anishi
    Gupta, Uma
    2018 3RD INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, COMMUNICATION, COMPUTER, AND OPTIMIZATION TECHNIQUES (ICEECCOT - 2018), 2018, : 1147 - 1152
  • [50] Deep Convolutional Neural Network for Fog Detection
    Zhang, Jun
    Lu, Hui
    Xia, Yi
    Han, Ting-Ting
    Miao, Kai-Chao
    Yao, Ye-Qing
    Liu, Cheng-Xiao
    Zhou, Jian-Ping
    Chen, Peng
    Wang, Bing
    INTELLIGENT COMPUTING THEORIES AND APPLICATION, PT II, 2018, 10955 : 1 - 10