CMOS Transistor Scaling Past 32nm and Implications on Variation

被引:32
作者
Kuhn, Kelin J. [1 ]
机构
[1] Intel Corp, Portland Technol Dev, Hillsboro, OR 97124 USA
来源
2010 IEEE/SEMI ADVANCED SEMICONDUCTOR MANUFACTURING CONFERENCE | 2010年
关键词
THRESHOLD VOLTAGE FLUCTUATION; METAL-GATE TRANSISTORS; DECANANOMETER MOSFETS; LOGIC TECHNOLOGY; SILICON; VARIABILITY; THICKNESS; DESIGN; DEVICE; DELTA;
D O I
10.1109/ASMC.2010.5551461
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper explores CMOS transistor scaling past the 32nm generation and its implications on variation. Front-end variation sources are reviewed, with detailed discussion on lithography and polish variation sources past 32nm. New transistor architectures are discussed, with emphasis on benefits and challenges relative to variation. Detailed variation measurement techniques are reviewed, with supporting multi-generational trend results, including data from the 32nm node.
引用
收藏
页码:241 / 246
页数:6
相关论文
共 50 条
  • [1] CMOS Scaling Beyond 32nm: Challenges and Opportunities
    Kuhn, Kelin J.
    DAC: 2009 46TH ACM/IEEE DESIGN AUTOMATION CONFERENCE, VOLS 1 AND 2, 2009, : 310 - +
  • [2] Moore's Law past 32nm: Future Challenges in Device Scaling
    Kuhn, Kelin J.
    IWCE-13: 2009 13TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ELECTRONICS, 2009, : 37 - 40
  • [3] Challenges and Mechanisms of CMP Slurries for 32nm and Beyond
    Morinaga, Hitoshi
    Tamai, Kazusei
    CHINA SEMICONDUCTOR TECHNOLOGY INTERNATIONAL CONFERENCE 2011 (CSTIC 2011), 2011, 34 (01): : 591 - 596
  • [4] A 32nm Low Power RF CMOS SOC Technology Featuring High-k/Metal Gate
    VanDerVoorn, P.
    Agostinelli, M.
    Choi, S. -J.
    Curello, G.
    Deshpande, H.
    El-Tanani, M. A.
    Hafez, W.
    Jalan, U.
    Janbay, L.
    Kang, M.
    Koh, K. -J.
    Komeyli, K.
    Lakdawala, H.
    Lin, J.
    Lindert, N.
    Mudanai, S.
    Park, J.
    Phoa, K.
    Rahman, A.
    Rizk, J.
    Rockford, L.
    Sacks, G.
    Soumyanath, K.
    Tashiro, H.
    Taylor, S.
    Tsai, C.
    Xu, H.
    Xu, J.
    Yang, L.
    Young, I.
    Yeh, J. -Y.
    Yip, J.
    Bai, P.
    Jan, C. -H.
    2010 SYMPOSIUM ON VLSI TECHNOLOGY, DIGEST OF TECHNICAL PAPERS, 2010, : 137 - +
  • [5] Monolithic Integration of O-band Photonic Transceivers in a "Zero-change" 32nm SOI CMOS
    Moazeni, S.
    Atabaki, A.
    Cheian, D.
    Lin, S.
    Ram, R. J.
    Stojanovic, V.
    2017 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2017,
  • [6] A Read-Decoupled Error-Tolerant 10T SRAM Cell in 32nm CMOS Technology
    Mansore, S. R.
    Naik, Amit
    JORDAN JOURNAL OF ELECTRICAL ENGINEERING, 2023, 9 (04): : 481 - 495
  • [7] Gate sizing: FinFETs vs 32nm bulk MOSFETs
    Swahn, Brian
    Hassoun, Soha
    43RD DESIGN AUTOMATION CONFERENCE, PROCEEDINGS 2006, 2006, : 528 - +
  • [8] Heavy Ion SEU Test Data for 32nm SOI Flip-Flops
    Quinn, R. C.
    Kauppila, J. S.
    Loveless, T. D.
    Maharrey, J. A.
    Rowe, J. D.
    McCurdy, M. W.
    Zhang, E. X.
    Alles, M. L.
    Bhuva, B. L.
    Reed, R. A.
    Holman, W. T.
    Bounasser, M.
    Lilja, K.
    Massengill, L. W.
    2015 IEEE RADIATION EFFECTS DATA WORKSHOP (REDW), 2015, : 40 - 44
  • [9] Variability Headaches in Sub-32 nm CMOS
    Asenov, A.
    ULSI PROCESS INTEGRATION 6, 2009, 25 (07): : 131 - 136
  • [10] Cell projection use in mask-less lithography for 45nm & 32nm logic nodes
    Manakli, S.
    Komami, H.
    Takizawa, M.
    Mitsuhashi, T.
    Pain, L.
    ALTERNATIVE LITHOGRAPHIC TECHNOLOGIES, 2009, 7271