Enhanced NO2 sensing aptness of ZnO nanowire/CuO nanoparticle heterostructure-based gas sensors

被引:116
作者
Navale, Y. H. [1 ]
Navale, S. T. [2 ]
Stadler, F. J. [2 ]
Ramgir, N. S. [3 ]
Patil, V. B. [1 ]
机构
[1] Solapur Univ, Sch Phys Sci, Funct Mat Res Lab, Solapur 413255, MS, India
[2] Shenzhen Univ, Nanshan Dist Key Lab Biopolymers & Safety Evaluat, Guangdong Res Ctr Interfacial Engn Funct Mat, Coll Mat Sci & Engn,Shenzhen Key Lab Polymer Sci, Shenzhen 518055, Peoples R China
[3] Bhabha Atom Res Ctr, Tech Phys Div, Bombay 400085, MS, India
关键词
Metal oxides; Heterostructure; Nanowire; Chemiresistive properties; NO2; Sensor; OXIDE-FILMS; NANORODS; PERFORMANCE; ROUTE; CUO; HETEROJUNCTIONS; FABRICATION; INHALATION; ARRAY;
D O I
10.1016/j.ceramint.2018.10.022
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Designing heterostructure materials for better gas sensing performance is a key for obtaining low-temperature gas sensor device technologies. Herein, CuO nanoparticle-ZnO nanowire heterostructure-based gas sensors have been fabricated by thermal evaporation followed by annealing in argon and air atmospheres and named respectively as NWG and NWA sensors. X-ray diffraction demonstrates the monoclinic structure of CuO and hexagonal wurtzite structure of ZnO and, thus, the formation of heterostructure. Morphological analysis confirms the ZnO nanowires (NWs) were well-linked to CuO nanoparticles (NPs). At an optimized temperature of 150 degrees C, the heterostructure sensor exhibits a maximum response (NWG, 175%) to NO2 over other oxidizing/reducing target gases on the exposure of 100 ppm concentration. This heterostructure sensor, noteworthy, responds to an extremely low exposure of NO2 gas (1 ppm). The interactions of oxidizing NO2 gas with ZnO/CuO heterostructure sensors has effectively been scrutinized using impedance spectroscopy analysis.
引用
收藏
页码:1513 / 1522
页数:10
相关论文
共 40 条
[1]   Field-effect transistors based on single semiconducting oxide nanobelts [J].
Arnold, MS ;
Avouris, P ;
Pan, ZW ;
Wang, ZL .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (03) :659-663
[2]   Preparation, characterization of WO3-SnO2 nanocomposites and their sensing properties for NO2 [J].
Bai Shouli ;
Li Dianqing ;
Han Dongmei ;
Luo Ruixian ;
Chen Aifan ;
Liu, Chung Chiun .
SENSORS AND ACTUATORS B-CHEMICAL, 2010, 150 (02) :749-755
[3]   Novel route for fabrication of nanostructured α-Fe2O3 gas sensor [J].
Bandgar, D. K. ;
Navale, S. T. ;
Khuspe, G. D. ;
Pawar, S. A. ;
Mulik, R. N. ;
Patil, V. B. .
MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2014, 17 :67-73
[4]   An innovative gas sensor incorporating ZnO-CuO nanoflakes in planar MEMS technology [J].
Behera, Bhagaban ;
Chandra, Sudhir .
SENSORS AND ACTUATORS B-CHEMICAL, 2016, 229 :414-424
[5]  
Biao L., 2004, J PHYS CHEM B, V108, P4338
[6]   Preparation, characterization and gas-sensing properties of SnO2-In2O3 nanocomposite oxides [J].
Chen, AF ;
Huang, XD ;
Tong, ZF ;
Bai, SL ;
Luo, RX ;
Liu, CC .
SENSORS AND ACTUATORS B-CHEMICAL, 2006, 115 (01) :316-321
[7]   Prominent Reducing Gas-Sensing Performances of n-SnO2 Nanowires by Local Creation of p-n Heterojunctions by Functionalization with p-Cr2O3 Nanoparticles [J].
Choi, Sun-Woo ;
Katoch, Akash ;
Kim, Jae-Hun ;
Kim, Sang Sub .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (20) :17723-17729
[8]   Synthesis of SnO2-ZnO core-shell nanofibers via a novel two-step process and their gas sensing properties [J].
Choi, Sun-Woo ;
Park, Jae Young ;
Kim, Sang Sub .
NANOTECHNOLOGY, 2009, 20 (46)
[9]   Hydrothermal route to ZnO nanocoral reefs and nanofibers [J].
Choy, JH ;
Jang, ES ;
Won, JH ;
Chung, JH ;
Jang, DJ ;
Kim, YW .
APPLIED PHYSICS LETTERS, 2004, 84 (02) :287-289
[10]   Micro-Raman and XPS studies of pure ZnO ceramics [J].
Das, J. ;
Pradhan, S. K. ;
Sahu, D. R. ;
Mishra, D. K. ;
Sarangi, S. N. ;
Nayak, B. B. ;
Verma, S. ;
Roul, B. K. .
PHYSICA B-CONDENSED MATTER, 2010, 405 (10) :2492-2497