HINE: Heterogeneous Information Network Embedding

被引:16
作者
Chen, Yuxin [1 ]
Wang, Chenguang [2 ]
机构
[1] Peking Univ, Key Lab High Confidence Software Technol, Minist Educ, EECS, Beijing, Peoples R China
[2] IBM Res Almaden, San Jose, CA USA
来源
DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2017), PT I | 2017年 / 10177卷
关键词
Heterogeneous information network; Network embedding; Semantic embedding;
D O I
10.1007/978-3-319-55753-3_12
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Network embedding has shown its effectiveness in embedding homogeneous networks. Compared with homogeneous networks, heterogeneous information networks (HINs) contain semantic information from multi-typed entities and relations, and are shown to be a more effective model for real world data. The existing network embedding methods fail to explicitly capture the semantics in HINs. In this paper, we propose an HIN embedding model (HINE), which consists of local and global semantic embedding. Local semantic embedding aims to incorporate entity type information via embedding the local structures and types of the entities in a supervised way. Global semantic embedding leverages multihop relation types among entities to propagate the global semantics via a Markov Random Field (MRF) to impact the embedding vectors. By doing so, HINE is capable to capture both local and global semantic information in the embedding vectors. Experimental results
引用
收藏
页码:180 / 195
页数:16
相关论文
共 43 条
[1]  
Ahmed A., 2013, 22 INT WORLD WID WEB, P37, DOI [10.1145/2488388.2488393, DOI 10.1145/2488388.2488393]
[2]  
Al Shalabi L., 2006, Journal of Computer Sciences, V2, P735, DOI 10.3844/jcssp.2006.735.739
[3]  
[Anonymous], 2014, P 20 ACM SIGKDD INT, DOI [DOI 10.1145/2623330.2623732, 10 . 1145 / 2623330 . 2623732. arXiv: 1403.6652]
[4]  
[Anonymous], 2009, CIKM, DOI 10.1145/1645953.1646094
[5]  
Bhagat S, 2011, SOCIAL NETWORK DATA ANALYTICS, P115
[6]  
Bordes A, 2013, P 26 INT C NEURAL IN, P2787
[7]  
Cao S., 2015, P 24 ACM INT C INF K, P891
[8]  
Cao SS, 2016, AAAI CONF ARTIF INTE, P1145
[9]   Heterogeneous Network Embedding via Deep Architectures [J].
Chang, Shiyu ;
Han, Wei ;
Tang, Jiliang ;
Qi, Guo-Jun ;
Aggarwal, Charu C. ;
Huang, Thomas S. .
KDD'15: PROCEEDINGS OF THE 21ST ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2015, :119-128
[10]  
Cox T.F., 2000, Multidimensional Scaling, V2nd ed.